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Foreword 
The ACS Symposium Series was first published in 1974 to pro­

vide a mechanism for publishing symposia quickly in book form. The 
purpose of the series is to publish timely, comprehensive books devel­
oped from ACS sponsored symposia based on current scientific re­
search. Occasionally, books are developed from symposia sponsored by 
other organizations when the topic is of keen interest to the chemistry 
audience. 

Before agreeing to publish a book, the proposed table of con­
tents is reviewed for appropriate and comprehensive coverage and for 
interest to the audience. Some papers may be excluded to better focus 
the book; others may be added to provide comprehensiveness. When 
appropriate, overview or introductory chapters are added. Drafts of 
chapters are peer-reviewed prior to final acceptance or rejection, and 
manuscripts are prepared in camera-ready format. 

As a rule, only original research papers and original review 
papers are included in the volumes. Verbatim reproductions of previ­
ously published papers are not accepted. 

ACS Books Department 
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Preface 
Chemometrics is an approach to analytical chemistry based on the 

idea of indirect observation. Measurements related to the chemical 
composition of a substance are taken and the value of a property of 
interest is inferred from them through some mathematical relation. From 
this definition, the message to the scientific community is that chemo­
metrics is a process. Measurements are made, data are collected, and 
information is obtained with the information periodically assessed to 
acquire actual knowledge. 

Chemoinformatics, which is a subfield of chemometrics, encom­
passes the analysis, visualization, and use of chemical structural infor­
mation as a surrogate variable for other data or information. The 
boundaries of chemoinformatics have not yet been defined. Only 
recently has this term been coined. Chemoinformatics takes advantage of 
techniques from many disciplines such as molecular modeling, chemical 
information, and computational chemistry. The reason for the interest in 
chemoinformatics is the development of experimental techniques such as 
combinatorial chemistry and high-throughput screening, which require a 
chemist to analyze unprecedented volumes of data. Access to approp­
riate algorithms is crucial if such experimental techniques are to be 
effectively exploited for discovery. 

Most chemists want to take advantage of chemometric and chemo-
informatic methods, but many scientists lack the knowledge required to 
decide which techniques are the most appropriate as well as an 
understanding of the underlying advantages and disadvantages of each 
technique. The symposium entitled, Chemometrics and Chemoinfor­
matics" which was held at the 224th American Chemical Society (ACS) 
National Meeting in Boston, Massachusetts on August 21-22, 2004, was 
intended to address these issues. Several research areas were highlighted 
in this symposium, including chemical structure representation, 

ix 
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descriptor selection, and structure-activity correlations in large datasets. 
Many applications in computer-aided drug design (e.g., diversity 

analysis, library design, and virtual screening) depend on the 
representation of molecules by descriptors that capture their structural 
characteristics and properties. The integration of similarity and diversity 
analysis with other methods is directly tied to the development of better 
and more realistic descriptors. The chapters in this text by Breneman and 
co-workers, Willet, and Henryand Durant present some recent 
developments in this area. 

Hundreds of molecular descriptors have been reported in the litera­
ture, ranging from simple bulk properties to elaborate three-dimensional 
formulations and complex molecular fingerprints, which sometimes 
consist of thousands of bit positions. The development of new types of 
feature selection algorithms and the validation of such algorithms is 
crucial to progress in computer-aided molecular design. Because of the 
larger data sets, an assortment of computational methods also needs to 
be developed to cope with the enormous amounts of data generated. The 
crucial role played by computational methods in chemoinformatics is 
enumerated in a chapter by Bajorath and co-workers, and new 
algorithms for analyzing and mining structure-activity data are 
described in chapters by Lavine et al., MacCuish, Tong et al., and Garg. 

Bioinformatics was also represented in the symposium (see the 
chapter by Bergund et al.). The processes of target identification, target 
validation, and assay development in high throughput screening need to 
be tied together, which is why data visualization, interpretation, and 
mining techniques have become so important in bioinformatics. The 
boundary between chemoinformatics and bioinformatics is blurring due 
to the development of better algorithms to analyze and visualize gene 
expression data and to integrate them with other information. This is 
critical in making such data more amenable to interpretation. By 
bringing together scientists from academia and industry in the United 
States and Europe at this symposium, we hoped to develop 
collaborations that could eventually lead to bridging the gap between the 
different types of data generated in drug discovery studies, thereby 
changing the whole concept of bio- and chemoinformatics. 

Tutorial chapters are included in this volume. They can assist the 
reader by providing crucial background information. These chapters are 
also suitable for use in both graduate and undergraduate courses. An 
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overview of chemometrics and principal component analysis is presented 
in the first chapter. Brown et al.discuss multivariate calibration and the 
problems that arise when using it, such as calibration transfer. The 
impact of mathematical and computational methods in chemistry is 
considered by Milne, who concludes that mathematical and 
computational methods have generally served only as a tool in 
chemistry, with the exception of graph theory, which has provided new 
and sometimes superior ways in which chemical structure can be 
viewed. 

There was strong interest in this symposium among chemists in a 
number of different disciplines. The ACS Divisions of Analytical 
Chemistry and Agricultural and Food Chemistry, Inc. cosponsored this 
symposium in conjunction with the Division of Computers in Chemistry. 
Currently, there are few textbooks published on this subject, and this 
proceedings volume will contribute significantly to furthering the 
education of chemists and other scientists in this field. 

Barry K. Lavine 
Department of Chemistry 
Oklahoma State University 
455 Physical Science II 
Stillwater, OK 74078-3071 
(405) 744-5945 (telephone) 
bklab@chem.okstate.edu (email) 
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Chapter 1 

Chemometrics: Past, Present, and Future 

Barry K. Lavine1,3 and Jerome Workman, Jr.2 

1Department of Chemistry, Clarkson University, Potsdam, NY 13699-5810 
2Argose Incorporated, 230 Second Avenue, Waltham, M A 02451 

3Current address: Department of Chemistry, Oklahoma State University, 
455 Physical Science II, Stillwater, O K 74078-3071 

Chemometrics, which offers the promise of faster, cheaper, 
and better information with known integrity, has enjoyed 
tremendous success in the areas related to calibration of 
spectrometers and spectroscopic measurements. However, 
chemometrics has the potential to revolutionize the very 
intellectual roots of problem solving. A chemometric based 
approach to scientific problem solving attempts to explore the 
implications of data so that hypotheses, i.e., models of the 
data, are developed with greater awareness of reality. It can be 
summarized as follows: (1) measure the phenomena or process 
using chemical instrumentation that generates data rapidly and 
inexpensively, (2) analyze the multivariate data, (3) iterate i f 
necessary, (4) create and test the model, and (5) develop 
fundamental multivariate understanding of the process. This 
approach does not involve a thought ritual; rather it is a 
method involving many inexpensive measurements, possibly a 
few simulations, and chemometric analysis. It constitutes a 
true paradigm shift since multiple experimentation and 
chemometrics are used as a vehicle to examine the world from 
a multivariate perspective. Mathematics is not used for 
modeling per se but more for discovery and is thus a data 
microscope to sort, probe, and to look for hidden relationships 
in data. 

© 2005 American Chemical Society 1 
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2 

1. Introduction 

Chemometrics is an approach to analytical and measurement science based 
on the idea of indirect observation1. Measurements related to the chemical 
composition of a substance are taken, and the value of a property of interest is 
inferred from them through some mathematical relation. Chemometrics works 
because the properties of many substances are uniquely defined by their 
chemical composition. 

The actual term chemometrics was first coined in 1975 by Bruce Kowalski 
in a letter that was published in the Journal of Chemical Information and 
Computer Science2. Motivation for the development of this subfield of 
analytical chemistry was simple enough at the time. The dramatic increase in the 
number and sophistication of chemical instruments triggered interest in the 
development of new data analysis techniques that could extract information from 
large arrays of chemical data that were routinely being generated. Much of the 
growth and interest in the field of chemometrics that continues to occur is driven 
by the press of too much data. 

Several definitions for chemometrics have appeared in the chemical 
literature since the inception of the field3. The message communicated by these 
definitions to the industrial and academic community is that chemometrics is a 
process. Measurements are made, and data are collected. Information is 
obtained with the information periodically assessed to acquire actual knowledge. 
This, in turn, has led to a new approach for solving scientific problems: [1] 
measure a phenomenon or process using chemical instrumentation that generates 
data swiftly and inexpensively, [2] analyze the multivariate data, [3] iterate i f 
necessary, [4] create and test the model, and [5] develop fundamental 
multivariate understanding of the measured process. The chemometrics 
approach does not involve a thought ritual. Rather, it is a method involving 
many inexpensive measurements, possible a few simulations, and chemometric 
analysis. It constitutes a true paradigm shift since multiple experimentation and 
chemometrics are used as a vehicle to examine the world from a multivariate 
perspective. Mathematics is not used for modeling per se but more for discovery 
and is thus a data microscope to sort, probe, and to look for hidden relationships 
in data. 

The chemometrics approach explores the implications of data so that 
hypotheses, i.e., models of the data, are developed with a greater awareness of 
reality. This exploratory data mining approach is in some respects more rigorous 
than simply formulating a hypothesis from a set of observations, since a variety 
of techniques can be used to validate the model with predictive success being the 
most powerful. If predictive success can be repeated and found to hold well for 
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the observed experimental data, then the successful model can be articulated into 
cause and effect, not just simple correlation. 

This new paradigm for learning can be summarized as follows: fail first, fail 
cheap and move on. Failures provide the necessary learning for future successes. 
The size of your scrapheap indicates the learning potential for future successes. 
This new approach, which looks at all of the data using multivariate methods, is 
the basis of combinatorial chemistry, which has revolutionized drug discovery4. 
Although the pharmaceutical industry has embraced many aspects of this 
approach, few chemists in academia actually take advantage of it. Chemometrics 
is considered to be too complex, and the mathematics can be misinterpreted. 
Problems arise in the implementation and maintenance of these methods. There 
is a lack of official practices and methods associated with chemometrics. This, 
despite the clear advantages of chemometrics, which include but are not limited 
to: speed in obtaining real-time information from data, extraction of high-quality 
information from less well resolved data, clear information resolution and 
discrimination power when applied to higher order data, and improved 
knowledge of existing processes. 

2. Soft Modeling in Latent Variables 

The focus of chemometrics has been the development of correlative 
relationships using several (measurement) variables for prediction of physical or 
chemical properties of materials. These correlative relationships are based on 
sound chemical principles, which is why they are so robust. A unique 
methodology known as soft modeling in latent variables5 is used to forge these 
relationships. Soft modeling is based on a simple premise, that signal is the part 
of the data that describes the property or effect of interest, and noise is 
everything else. Noise can be systematic (e.g., sloping base line) or random 
(e.g., white noise). Because our observations are the sum of both parts, the signal 
is often hidden in the data. Using methods based on variance, multivariate data 
can be separated into signal and noise. 

Consider a set of 100 point spectra of gasolines, each with a different octane 
number. If the correct spectroscopy has been performed, most of the variation 
observed in these spectra should be about changes in octane number, not random 
or instrumental error. The variation in these 100 point spectra can be depicted by 
the scatter of the gasoline samples in a data space whose coordinate axes are the 
absorbances of the wavelengths constituting the spectra. Scatter of points in this 
space is a direct measure of the data's variance. Octane number would be 
expected to be the primary contributor to the scatter. Figure 1 shows a plot of 
ten gasoline samples in a data space whose coordinate axes are the absorbance 
values at 3 wavelengths. A line defining the direction of increasing octane 
number has been drawn through the 3-dimensional measurement space. Most of 
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the gasoline samples can be found on this line. The distance between each data 
point and the line is the variance of the data that is not explained by octane 
number. One can conclude that most of the variance or scatter in these 3 
measurements is correlated to octane number. 

Multivariate analysis methods based on variance constitute a general 
approach to data analysis since these methods can be used to explore, calibrate, 
and classify data. This approach to data analysis is called soft modeling in latent 
variables. It is synonymous with chemometrics. Soft modeling is possible 
because chemical data sets are usually redundant. That is, chemical data sets are 
not information rich. This occurs because of the way the data are taken. 
Consider an absorbance spectrum or a chromatogram. One sensor channel - the 
absorbance at a particular wavelength or the response at a set time in a 
chromatogram - is often related to the next channel, which results in the desired 
information being obscured by redundancies in the data. Redundancy in data is 
due to collinearity among the measurement variables. Consider a set of samples 
characterized by two measurements, X! and X 2 . Figure 2 shows a plot of these 
data in a 2-dimensional space. The coordinate axes or basis vectors of this 
measurement space are the variables X! and X 2 . There appears to be a 
relationship between these two measurement variables. This relationship 
suggests that X! and X 2 are moderately correlated since fixing the value of Xj 
limits the potential range of values for X 2 . If the two variables, Xj and X 2 , were 
uncorrelated, the entire area of the enclosed rectangle would be fully populated 
by data points. Because information can be defined as the scatter of points in a 
measurement space, correlations between measurement variables decrease the 
information content of this space. Data points are restricted to a small region of 
this measurement space and may even lie in a subspace when the measurement 
variables are highly correlated. This is shown in Figure 3. X 3 is perfectly 
correlated with X\ and X 2 since X! plus X 2 equals X 3 , which is why the 7 data 
points in Figure 3 lie in a plane even though each data point has 3 measurements 
associated with it. 

3. Principal Component Analysis 

Variables that are highly correlated or have a great deal of redundancy are 
said to be collinear. High collinearity between variables - as measured by their 
correlation - is a strong indication that a new coordinate system can be found 
that is better at conveying the information present in the data than axes defined 
by the original measurement variables. This new coordinate system for 
displaying the data is based on variance. The principal components of the data 
define the variance-based axes of this new coordinate system. The first principal 
component is formed by determining the direction of largest variation in the 
original measurement space of the data and modeling it with a line fitted by 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



5 

var2 0 0 v a M 

Figure 1. Ten gasoline samples plotted in a data space whose coordinate axes 
are the absorbance values of 3 wavelengths. A line representing the direction of 

increasing octane number has been drawn through this space. Most of the 
variation in the data is correlated to octane number. 
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Figure 2. Seventeen samples projected onto a two-dimensional data space 
defined by the variables x, andx2. A, B, C, and D represent the smallest and 

largest values ofx, andx2. (Adaptedfrom NBS J. Res., 1985, 190(6), 465-476.)  A
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Figure 3. Seven hypothetical samples projected onto a 3-dimensional space 
defined by the measurement variables Xh X2, andX3 (right). The coordinates of 

each sample point can be found in the accompanying data matrix (left). The 
columns of the data matrix demote the variables and the rows give the 

coordinates of each sample. (Adaptedfrom Multivariate Pattern Recognition in 
Chemometrics, Elsevier Science Publishers, Amsterdam, 1992.) 
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linear least squares (see Figure 4). This line will pass through the center of the 
data. The second principal component lies in the direction of next largest 
variation. It passes through the center of the data and is orthogonal to the first 
principal component. The third principal component lies in the direction of next 
largest variation. It also passes through the center of the data, is orthogonal to 
the first and second principal component, and so forth. Each principal 
component describes a different source of information because each defines a 
different direction of scatter or variance in the data. The orthogonality constraint 
imposed by the mathematics of principal component analysis also ensures that 
each variance-based axis is independent. 

Figure 4. Principal component (PC) axes defining a new set of basis vectors for 
the measurement space defined by the variables X, Y, and Z. The third principal 

component describes only noise in the data. 

One measure of the amount of information conveyed by each principal 
component is the variance of the data explained by the principal component, 
which is expressed in terms of its eignevalue. For this reason, principal 
components are arranged in order of decreasing eigenvalues. The most 
informative principal component is the first and the least informative is the last. 
The maximum number of principal components that can be extracted from the 
data is the smaller of either the number of samples or the number of variables in 
the data set, as this number defines the largest possible number of independent 
axes in our data. 

If the data have been collected with due care, one would expect that only the 
larger principal components would convey information about the signal since 
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most of the information in the data should be about the property or effect of 
interest that we seek to study. In other words, signal variation should be larger 
than noise variation, which means that we should discard principal components 
with small eigenvalues. H owever, the situation is not as straightforward as is 
implied. Each principal component describes some amount of signal and some 
amount of noise in the data because of accidental c orrelations b etween s ignal 
and noise. The larger principal components primarily describe signal variation, 
whereas the smaller principal components essentially describe noise. By 
discarding the smaller principal components, noise is discarded but so is a small 
amount of signal. However, the reduction in noise more than compensates for the 
biased representation of the data that occurs from discarding principal 
components that contain a small amount of signal, but a large amount of noise. 
The approach of describing a data set in terms of important and unimportant 
variation is known as soft modeling in latent variables. 

Principal component analysis (PCA)6"8 takes advantage of the fact that a 
large amount of data generated in scientific studies has a great deal of 
redundancy and therefore a great deal of collinearity. Because the measurement 
variables are correlated, 100-point spectra do not require 100 independent 
orthogonal axes to define the position of a sample in the measurement space. 
Using principal component analysis, the original measurement variables that 
constitute a correlated axes system can be converted into an orthogonal axes 
system, thereby removing correlations and forcing the axes to be independent. 
This requirement dramatically reduces the dimensionality of the data since only a 
few independent axes are needed to describe the data. The spectra of a set of 
samples may lie in a subspace of the original 100-dimensional measurement 
space and a plot of the two or three largest principal components of the data can 
help one to visualize the relative position of the spectra in this subspace. 

By examining the principal components of the data, it is possible to identify 
important relationships in the data, that is, find similarities and differences 
among the samples in a data set, since each principal component captures a 
different source of information. The principal components which describe 
important variation in the data can be regressed against the desired property 
variable using linear least squares to develop a soft calibration model. Principal 
components that describe the property of interest are called latent variables. 

With PCA, we are able to plot the data in a new coordinate system based on 
variance. The origin of the new coordinate system is the center of the data, and 
the coordinate axes of the new system are the principal components of the data 
which primarily describe signal. This variance based coordinate system will be 
different for each data set. With this new coordinate system, we can uncover the 
relationships present in the data. PCA is actually using the data to suggest the 
model, which is a new coordinate system for our data. The model is local since 
the model center and the principal components will be different for each data set. 
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The focus of PCA (and soft modeling) is signal, not noise. Furthermore, PCA 
based soft models are both linear and additive. 

4. Partial Least Squares 

Soft modeling in latent variables is central to many of the more popular 
methods in chemometrics. For example, a modeling method called partial least 
squares (PLS) has come to dominate the practice of multivariate calibration in 
near infrared spectroscopy because of the quality of the models produced and the 
ease of their implementation due to the availability of PLS software. Only a 
summary of the PLS method is provided here because the statistical basis of this 
method has been extensively discussed at many levels9*12 including fairly 
introductory treatments, discussions oriented towards spectroscopists and more 
advanced discussions. 

PLS was originally developed by Herman Wold as an alternative to 
classical least squares for modeling collinear data. Motivation for developing 
PLS was simple enough: approximate the design space of the original 
measurement variables with one of lower dimension. However, the eigenvectors 
in PLS are developed simultaneously along with the calibration model so that 
each eigenvector is a linear combination of the original measurement variables 
which has been rotated to ensure maximum correlation with the property 
information provided by the response variable. Because of the rotation, which 
attempts to find an appropriate compromise between explaining the measurement 
variables and predicting the response variable, surrogate variables generated by 
PLS are often better at capturing information relevant to the calibration than a 
corresponding PCA model. Confounding of the desired signal by interferents is 
usually less of a problem in PLS than in PCA since PLS utilizes both the 
response and measurement variables to iteratively determine the PLS 
components. 

Both PLS and PCA use the technique of linear least squares, which involves 
an averaging of the data. Hence, both techniques will yield features that contain 
more information about the calibration than any of the original measurement 
variables provided that most of the original measurement variables contain some 
information about the problem. Suppose the relation between absorbance and 
concentration is linear for a large number of wavelengths but the sensitivity and 
degree of linearity at each wavelength is different. Averaging would then help. 
If only a few wavelengths have sufficient sensitivity and linearity, averaging of 
all the wavelengths would serve only to amplify the noise in the data. 
Furthermore, very little would be gained by averaging wavelengths that possess 
similar sensitivity and linearity. 
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5. Applications of Chemometrics 

Chemometrics is an application driven field. Any discussion of this subject 
cannot and should not be done without focusing on so-called novel and exciting 
applications. Criteria used to select these application areas are based in part on 
the number of literature citations and in part on the perceived impact that 
developments in these particular areas will have on chemometrics and analytical 
chemistry. The four application areas that are highlighted in this book are image 
analysis (Chapter 3), sensors (Chapter 2), chemoinformatics (Chapters 6-14) , 
and bioinformatics (Chapters 4 and 5). 

Image analysis attempts to exploit the power gained by interfacing human 
perception with cameras and imaging systems that utilize the entire 
electromagnetic spectrum. Insight into chemical and physical phenomenon can 
be g arnered w here t he s uperior p attern r ecognition o f h umans o ver computers 
provides us with a strong argument to develop chemometric tools for imaging. 
These include tools for interpretation, creation or extraction of virtual images 
from real data, data compression and display, image enhancement, and three-
dimensional views into structures and mixtures. 

Chemometrics has an even greater potential to improve sensor performance 
than miniaturization of hardware. Fast computations combined with multivariate 
sensor data can provide the user with continuous feedback control information 
for both the sensor and process diagnostics. The sensor can literally become a 
self-diagnosing entity, flagging unusual data that arises from a variety of sources 
including a sensor malfunction, a process disruption, an unusual event, or a 
sampling issue. Single sensors or mixed arrays of different types of sensors can 
be networked into an intelligent system, which can send an alarm to a human 
operator when questions or unusual circumstances arise. 

Chemoinformatics encompasses the analysis, visualization, and use of 
chemical information as a surrogate variable for other data or information. 
Contemporary applications of chemoinformatics include, among others: diversity 
analysis, library design, and virtual screening. Chemical structure representation 
through descriptors that capture the structural characteristics and properties of 
molecules is an unsolved problem in chemoinformatics. Relating chemical 
structure to biological activity or physical and chemical properties is not a new 
endeavor. The ability to perform this task on a large data set, however, presents 
challenges that will require an assortment of new computational methods 
including new methods for analysis and visualization of data. 

Microarrays allow the expression level of thousands of genes or 
proteins to be measured simultaneously. Data sets generated by these arrays 
consist of a small number of observations (e.g., 20-100 samples) on a very large 
number of variables (e.g., 10,000 genes or proteins). The observations in these 
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data sets often have other attributes associated with them such as a class label 
denoting the pathology of the subject. Finding genes or proteins that are 
correlated to these attributes is often a difficult task since most of the variables 
do not contain information about the pathology and as such can mask the identity 
of the relevant features. The development of better algorithms to analyze and to 
visualize expression data and to integrate it with other information is crucial to 
making expression data more amenable to interpretation. We would like to be 
able to analyze the large arrays of data from a microarray experiment at an 
intermediate level using pattern recognition techniques for interpretation. At the 
very least, such an analysis could identify those genes worthy of further study 
among the thousands of genes already known. 

Molecular dynamic (MD) simulations using modified versions of the 
conformational flooding technique when coupled with the data reduction and 
sorting abilities of multivariate analysis can provide critical biomolecular 
information on structure function relationships. Previous studies have 
demonstrated the need for extracting meaningful information from complex and 
large MD simulation data sets, while simultaneously identifying the features of 
the data that are responsible for the structural variation. Of particular interest is 
the development of methods for the reduction of large, highly dimensional 
information and information rich bioinformatic data sets to simple two- and 
three-dimensional representations enabling fundamental scientific discoveries 
and advances leading to a new generation and understanding of biochemistry. 
However, methodological developments should not be limited to statistical 
methods for mining data. Integration of computational modeling, statistics, 
chemometrics, and experimental evaluation will also be crucial to advances in 
understanding the microscopic details of biomolecules leading to a clear 
description of how biomolecular motion correlates with biological function. 
Methodology that will be developed as part of this research can provide 
researchers with a powerful new tool that could be applied to a wide range of 
problems that suffer from structural complexity including the development of 
synthetic agents to affect transcription, where the lack of sequence specificity 
prevents the utilization of existing agents to regulate a specific gene. 

6. Conclusions 

The field of chemometrics is in a suitable position to enter into a variety of 
important multivariate problem solving issues facing science and industry in the 
21 s t century. The ever expanding endeavors of imaging, sensor development, 
chemoinformatics, bioinformatics, machine learning, evolutionary computations, 
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and multivariate data exploration will also prove to be challenging opportunities 
for new scientific insight and improved processes. 
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Chapter 2 

Improving the Robustness of Multivariate 
Calibrations 

Steven D. Brown1, HuWei Tan1,2, and Robert Feudale1 

1Department of Chemistry and Biochemistry, University of Delaware, 
Newark, DE 19716 

2Current address: InfraredX, 125 Cambridge Park Drive, 
Cambridge, MA 02140 

2InfaredX, 125 Cambridge park Drive, Cambridge, MA 02140 
Multivariate calibration models are of critical importance to 
many analytical measurements, particularly for those based on 
collection of spectroscopic data. Generally, considerable effort 
is placed into constructing a multivariate calibration model 
because it is often meant to be used for extended periods of 
time. A problem arises, though, when the samples to be 
predicted are measured under conditions that differ from those 
used in the calibration. The changes in spectral variations that 
occur in these situations may be sufficient to make the model 
invalid for prediction under the changed conditions. Various 
standardization and preprocessing methods have been 
developed to enable a calibration model to be effectively 
updated to reflect such changes, often eliminating the need for 
a full recalibration. This chapter details recent efforts aimed at 
improving the robustness of multivariate calibrations to 
changes in the chemical system and to changes in the 
measurement process. 

© 2005 American Chemical Society 15 
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1. Introduction 

Multivariate calibration is a useful tool for extracting chemical information 
from spectroscopic signals. It has been applied to various analytical techniques, 
but its importance has been manifested in near-infrared (NIR) spectroscopy. The 
most commonly used multivariate methods for chemical analysis are partial least 
squares (PLS) regression and principal component regression (PCR), where 
factors that relate to variation in the response measurements are regressed 
against the properties of interest. Ideally, each factor added to the model would 
describe variation relevant for predicting property values. In NIR spectra, 
however, the first few factors that describe majority of the spectral variation 
usually account for baseline shifts and various instrumental effects. 

A practical limitation to multivariate calibration occurs when an existing 
model is applied to spectra that were measured under new sampling or new 
environmental conditions or on a separate instrument. Even if samples with 
identical amounts of analyte are measured, the spectral variation that is captured 
by the model will differ because of the different contributions from the sample 
matrix, the instrumental functions and the environment of the measurement. For 
this reason, a model developed on one instrument can generally not be used on 
spectra obtained from a second instrument to provide accurate estimates of 
calibrated property values. However, even the subtle changes in the matrix, the 
environment, sampling and instrumental function that occur over time can 
degrade a calibration model. 

Improving a calibration model to make it less sensitive to changes in sample 
matrix, instrumental response function and environmental conditions is a topic 
that has usually been considered in connection with other goals. Most often, the 
subject is connected with the transfer of a multivariate calibration model. 
Various methods for calibration transfer exist in the literature, and most have 
been discussed in recent reviews (1-3). As these reviews discuss, the transfer of a 
multivariate calibration amounts to making a mathematical correction. The 
degree to which the correction succeeds depends on the complexity of the effect 
being compensated and the needs of the user. 

It is best if the whole issue of calibration model transfer can be avoided, for 
example by careful maintenance of instruments so that the instrumental 
contribution to the multivariate measurement is made as constant as possible. 
Wide deployment of a calibration model is easier if the target instruments and 
the development instrument are very similar, so it is not surprising that many 
users of multivariate calibration will specify a particular brand and model of 
instrument be used throughout for the measurements used in the calibration. 
Standardization of the instrumental aspects makes the task of calibration model 
transfer from instrument to instrument all the easier. In rare cases, it is possible 
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to make instruments functionally identical, though the effort needed to do so is 
substantial (4). 

Like standardizing on a single brand and model of instrument, careful 
preprocessing of the data may also be an aid in making a multivariate calibration 
model useful under a wider range of conditions. In fact, some authors have 
observed that with proper preprocessing, multivariate calibration models can be 
used on multiple instruments without change {5,6). It should be noted that, as 
with stardardizing instruments and transferring calibration models, preprocessing 
efforts have met with varying success when applied generically. However, there 
are now new ways to assist in preprocessing to help improve the quality of a 
calibration model. As will be shown, these methods offer some promise in 
improving the usability and transferability of multivariate calibrations. 

The objective of this Chapter is to consider a few new preprocessing 
methods that this research group has developed to help improve the robustness 
of calibration models. Our focus is on robustness in sense of the process 
analytical chemistry, where the goal is to build and maintain a calibration to 
predict specific targets from a chemical process that varies over time. It will be 
assumed throughout this chapter that the signal is a spectrum measured at 
defined wavelengths and that the property of interest is the analyte concentration, 
although properties other than concentration and other types of signals also fit 
the discussion. 

2. Using Local Analysis to Create Robust Calibration Models 

There are several circumstances that can introduce variations in the new 
spectra that were not included in the calibration step. The presence of these un-
modeled variations in the new data can lead to strongly biased predictions from 
multivariate calibration models. Essentially, three situations exist that can render 
a model invalid. The first includes changes in the physical and/or chemical 
constitution of the sample matrix. These changes can result from differences in 
viscosity, particle size, surface texture, etc., that may occur between batches. 
Batch differences may arise from some change in the starting materials, sample 
preparation, or experimental design. One can even see effects from variations in 
the presentation of the sample to the spectrometer. These variations are often 
overlooked but can occasionally be particularly difficult to discover and 
compensate when they occur. 

The second situation arises from changes in the instrumental response 
function. These changes can occur when the data to be predicted are collected on 
an instrument different from that used to build the model. 
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The third situation that may render a model invalid occurs when the 
instrument's environment changes over time. Temperature and humidity 
variations can have a strong influence on measurement values by causing shifts 
in absorption bands and nonlinear changes in absorption intensities in the 
spectra. 

These contributions to signal variation that changes between a calibration 
and its use in prediction are difficult to fully compensate, and it is often 
necessary (and almost always ideal) to provide a full recalibration. Because the 
instrumental effects noted above can occasionally be of the same magnitude as 
the spectral contributions of the desitred analyte, a mathematical correction 
cannot be expected to fully correct for all changes, a situation most 
spectroscopists will readily emphasize. The ASTM method for near-infrared 
spectral calibration (ASTM El655-00) takes this view, not surprisingly (7). 
However, neither the instrument nor its environment is static, despite the best 
efforts of the user. Significant changes in the instrument's behavior are to be 
expected over time, and as a consequence any calibration (or recalibration) 
effort has a useful lifetime, and that lifetime unfortunately can be quite short. 
Further, the cost of a full recalibration can be quite high, a consequence of the 
number of samples and replicates needed to get adequate calibration established. 
When the cost of recalibration is considered in connection with the limited 
lifetime of a calibration, any methodology that extends the useful lifetime of a 
calibration is clearly worthwhile. 

In some cases, the response of the new samples is not greatly affected by the 
new measurement conditions and the existing model can be used without 
applying any corrections. When this is not the case, some strategy must be used 
to avoid biased predictions that can result from using a flawed calibration model. 
If the future sources of variation can be identified, they can be incorporated into 
the model during calibration. The model can also be updated with new samples 
to account for the non-modeled variance. Standardization methods can be 
applied once the model is already in use to account for the new variations by 
transforming the spectral responses, model coefficients, or predicted values. 
These topics are discussed in a recent critical review of standardization 
methodology (J). 

At the outset, it should be noted that there are differing interpretations of the 
term "robust calibration." One could refer to "robust" in the sense that the 
calibration could be "robust to small, expected variations in measurement, 
sampling and processing" as would be needed in a regulated industry, or we 
might refer to robust in the sense that is relevant to process analytical 
measurements, where the robustness of a calibration model refers to its 
resistance to the effects of unintended and unexpected variations in the 
measurements. This Chapter focuses on the latter interpretation of the term. 

The way in which a process calibration model is made more "robust" - that 
is, resistant to the effects of unintended measurement or other variation on the 
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performance of the calibration model - involves one of two philosophies: either 
make the model small, to minimize the chance that effects external to the 
calibration can become a part of the calibration, or make the calibration model 
big enough to span the effects that might arise from variations external to the 
main relationship. 

The first philosophy involves isolating key wavelengths (if spectra are 
involved) and using as few as possible to build a calibration model. This local 
modeling approach is well-known in near infrared (NIR) spectrometry, having 
long been advocated by spectroscopists such as Karl Norris and others, including 
Howard Mark and Tomas Hirschfeld. Their approach involves isolating and 
using selected pieces of data to build calibration models. The goal is to find the 
most relevant signals for calibration while rejecting as much irrelevant signal as 
possible. Three ways of locating the most relevant signal involve use of 
wavelength selection schemes, projection methods and wavelet analysis. A 
robust model can be built by using variables that are either insensitive or are less 
sensitive to the variations in the experimental conditions. Successful application 
of sensor selection is dependent on finding variables that are insensitive to the 
offending variation yet sensitive to quantifying the analyte. 

Global modeling - the second approach - has been promoted by 
chemometricians such as Svante Wold and Bruce Kowalski, and this is often 
used in calibration modeling of complex systems where finding individual 
wavelengths for a small model of the sort described above may be problematic. 
The idea here is that there are variations correlated to the desired property that 
can be discovered in the presence of irrelevant variations though use of 
chemometric methods such as partial least squares (PLS) regression. For this 
method to be successful, the calibration must be developed in a way that the 
variation that can occur in the use of the model must be generated and spanned 
in the calibration step for that model. In a chemical process, historical data, 
especially of those from process upsets and outliers are sometimes used to help 
the calibration span spectra from these (rare?) events. 

While there are many ways to create calibration models from single 
wavelengths, ranging from the ad hoc approaches seen in the early NIR literature 
to the more systematic and highly automated approaches based on simulated 
annealing and genetic algorithms mentioned above, there are relatively few 
methods for the systematic upweighting and downweighting of spectral bands. 
Given the nature of NIR spectra, such an approach makes spectroscopic sense 
and might be one that would offer improved robustness over conventional 
modeling methods. 

Two approaches come to mind in selecting bands from multivariate spectra: 

• Select the band on the basis of a strong covariance relationship 
with the property (and, possibly equivalently, reject data from 
bands with weak or no covariance relationship with the property); 
and, 
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• Select the band on the basis of its frequency composition (shape) 
and its correlation to the property. 

As is well-known, calibration relationships built with partial least squares 
regression attempt to weight the data based on the strength of the covariance of 
the predictor variables and the property variables. Those having weak 
relationships with the property will be deweighted in the PLS calibration 
calculations. Global modeling methods rely on the weighting by PLS to correct 
for changes in the variation of components not directly connected to the 
calibration, but the weighting process is imperfect and some extraneous variation 
will become a part of the calibration model, often through accidental correlation, 
and changes in the weakly correlated signals will degrade the calibration model 
relative to the performance available from a model that avoids any contributions 
from external effects by some sort of variable selection. 

In the following discussion, matrices are denoted by capital bold characters 
(X, Y), column vectors by small bold characters (p, t), and row vectors by 
transpose vectors (pT). Indices are designated by small non-bold characters (j), 
index limits by capital non-bold characters (K), and constants by small italic 
characters (r). 

3. Projection Methods for Improving Model Performance 

One way to avoid contributions from weakly correlated variables in a 
calibration is to remove them prior to regression by projecting the data into a 
new space so that the contributions of variables uncorrelated to the property are 
reduced to zero. This is the principle behind orthogonal signal correction (OSC) 
and its close relatives (8,9), a method that has received a good deal of scrutiny of 
its use in simplifying the modeling of systems that change with time or with 
external factors. 

OSC preprocessing of a data set aims at removing the largest systematic 
variation in the response matrix X that is orthogonal to the property matrix Y 
prior to multivariate calibration. Consider the equation X = R + Z 4- E where 
R is a matrix containing the desired signal, Z is the matrix of undesired 
systematic variation, and E corresponds to random noise. Since Z can be 
separated from R, it is possible to find a projection subspace that will eliminate 
Z. If Z contains spectral variation that is orthogonal to the proiperty Y, the 

A T 

orthogonal compliment is estimated by Z = T±f± where P x is a set of basis 

vectors excluding the spectral contribution from Y and T x is the scores matrix 

in a subspace spanned by the basis defined in P x . Mathematically, the basis 

defining P x must be orthogonal to the target analyte Y, a requirement which 
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cannot be satisfied in some cases. Usually, no more than two orthogonal 
components can be found in the space, due to the orthogonality constraint, but 
sometimes no solution can be obtained. 

In order for any signal pre-processing method to improve a PLS model, 
prediction must be enhanced (as indicated by lower RMSEP values) or the 
overall model size (as measured by the OSC components + PLS latent variables) 
must be reduced. In many cases, pre-processing with OSC merely reduces the 
number of latent variables in the PLS calibration model by the number of OSC 
components removed, without any improvement in prediction performance. One 
sees similar performance from embedded OSC filtering, as found in 02-PLS, 
too. One reason for this occurrence is that OSC filtering removes global, 
systematic variance, while spectra are inherently local and multiscale in nature. 
Another reason is that most OSC algorithms impose a strict orthogonality 
constraint, and this constraint may result in an inadequate amount of weakly 
relevant variation being removed from the spectral data. 

In recent literature, it was shown that by relaxing the orthogonality 
constraint, less complex models with better prediction quality can be obtained 
(10,11). 

3.1 Piecewise OSC Preprocessing 

To avoid some of the limitations mentioned above, a piecewise OSC 
algorithm (POSC) was recently developed in this research group. Our aim was to 
relax the too-restrictive orthogonality constraint by processing the spectral data 
set in a piecewise fashion to account for local spectral features in frequency 
domain. 

A simplified algorithm for POSC filtering is summarized here. In a given 
window of the spectrum, first calculate the first principal component of X and 
compute the normalized weight vector w from the loading vector p obtained 
from w = p/(pTp). Next, orthogonalize the score vector t to Y, and compute a 
new loading vector p* by the relations t* = t - Y(YTY)_1YTt and p* = XTt* / 
(t*Tt*). Compute the filtered matrix E by subtracting the orthogonal component 
according to E = X - t*p*T. To remove another orthogonal component, use E as 
X and repeat the sequence given above. New test samples X t e s t can be corrected 
with the regression matrix W and loading matrix P of the calibration model by 
X*test = X t e s t - X t e s t W(P W) P . 

At each wavelength point within a given processing window, an individual 
OSC correction is conducted. This processing continues through the entire range 
of wavelengths until every portion of the spectrum is filtered. Full details of the 
piecewise OSC algorithm and its use can be found in (12). 
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3.2 Performance of POSC and OSC on Representative NIR Data 

We have compared OSC and POSC on several data sets that show problems of 
the sort described above (72). Here, we focus briefly on a selected result from 
the POSC filtering of the Cargill corn data set, one with unstabile baselines and 
with large amounts of scatter and other sources of extraneous variance. Figure 1 
shows a comparison of POSC and OSC filtering prior to PLS modeling of 
protein for instrument mp6. orthogonality constraint by the local processing. Not 
only does POSC filtering lead to a significantly smaller PLS calibration model (a 
reduction in the PLS model of 4 latent variables for 1 POSC component 
removed), the resulting PLS model performs slightly better than a PLS model 
developed on unfiltered data in prediction of new samples. OSC filtering, on the 
other hand, merely decreases the PLS model by 1 latent variable from that 
produced on raw data and does not alter the predictive power of the PLS 
modeling. As there was 1 OSC component removed in filtering, there is no net 
benefit from OSC pre-processing, no matter which algorithm for OSC is used. 

In Figure 1 and in all of the following discussion, the models are evaluated 
by considering the errors demonstrated in prediction of new data, either on 
separate (external) validation sets or in leave-one-out cross-validation. The error 
is calculated in terms of the root mean squared error of prediction or cross-
validation (RMSEP or RMSECV) For example, 

where yt is the actual value for each run, # is the corresponding predicted value, 
and / is the number of samples in the external test set. The RMSECV is defined 
similarly; all that changes is the origin of the samples to be predicted. Generally, 
an improvement in RMSEP or RMSECV of about 0.1 units is indicative of real 
improvement in the modeling. 

4. Localized Preprocessing with Wavelets for Model Improvement 

Projection methods are ineffective when the interfering sources of variance in 
the calibration data are correlated to the property, either because of the design of 
the experiment or through accidental correlation, possibly through the action of 
noise. Wavelet analysis offers an alternative means to isolate and remove 
offending signals by their frequency composition - essentially their shape. This 
ability to deal with local aspects of the signal makes it feasible to remove 
interfering peaks whose shapes may be similar to those parts of the spectra 
believed relevant to the target while retaining the useful parts of the signal. 

h(i) 
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©•••• No OSC 
- e - Wise OSC 
— * - Fearn OSC 

POSC 63 

4 6 8 
Number of Latent Variables 

77?e results shown in Figure 1 confirm the benefit from releasing the Figure 1: 
RMSECV values of protein calibration in Cargill corn using PLS models with 1-

12 L Vs. 1 OSC or POSC component was removed. POSC used a 63 point 
window. Reproducedfrom reference 12. Copyright 2002 Elsevier Publishers. 
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Thus, wavelet analysis offers an alternative path for filtering "noise" from a 
calibration, strengthening the calibration and possibly improving its predictive 
powers (13). 

According to wavelet theory, a discrete signal, / can be decomposed 
approximately as follows: fi « g M + + + , where / . / is the 
approximation component at the coarsest scale (level) / with a frequency no 
larger than 2'"/. This component is orthogonal to the detail components gj at 
different levels j (j = M , —, /-/). These detail components are mutually 
orthogonal and their frequencies lie between 2 / + 1 and 2J, respectively. 

Variance o 

Scale 

L = 0 

L = 1 

<rYi: W(, 
L = 3 

L = 9 

Variable 

Figure 2: Discrete Wavelet Transformation of Gasoline Spectral Data. Note the 
compression of the spectra with scale 

While many different approaches exist that use wavelets to process spectral 
data, we have found that the ones commonly reported in the chemometrics 
literature offer little real benefit in calibrations, mainly because of the 
compression associated with the discrete wavelet transform as conventionally 
implemented in toolboxes and elsewhere. Figure 2 shows the way in which a 
spectrum is decomposed with the conventional algorithm for the discrete wavelet 
transform (DWT). Note that the lowest frequencies in the spectrum (highest 
wavelet scales) are represented by a single point. While such compression is 
advantageous in image transmission and analysis, it is not helpful to signal 
processing data to be used in multivariate calibration because the low frequency 
effects, often the reason why calibrations fail, are inaccessible to much signal 
processing. 
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We have found that a version of the Mallat algorithm (14,15), where 
spectral signals are decomposed to a set of scales of constant length, is far more 
useful. The Mallat algorithm can be made to function much like a prism, in that 
it partitions a complex spectrum according to the component frequencies, so we 
call the new algorithm the "wavelet prism" (WP) (16). Baseline-like information 
can be found in the lowest-frequency approximation components, e.g., / i 0 , 
whereas noise-like information is mostly located in high-frequency detail 
components, e.g., g\ and g2. 

Wavelet Prism * 111 + * 

"HHI-HH H*i HH E 3 
Figure 3: Mallat "Wavelet Prism " Transform ofData from Figure 2. Scale 
decreases from left to right, but all spectra are the same length. Reproduced 

from reference 16. Copyright 2002 John Wiley and Sons, Ltd. 

Therefore, it is possible to strip out baseline (for example) by removing the 
lowest-frequency approximation component, if the background, analytical signal 
and noise contributions do not interact with each other and if the spectrum f 
satisfies the linear additivity rule f = gn 4-gs + fb, where gn is the detail 
component assigned to noise contributions, g s is the detail components assigned 
to signal and f> is the approximation components assigned to noise. If the scales 
representing background, signal and noise can be identified, those scales 
describing signal can be kept, those describing undesirable effects can be 
removed, and finally the wavelet reconstruction can then be run, leading to a 
shape-filtered signal. If the background and noise components can be isolated in 
this fashion, the filtering can lead to a smaller, cleaner calibration model, 
improving the life and utility of the calibration. 
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As an example of the effects of wavelet removal of background, we consider 
analysis of a NIR dataset (16). We rearranged the calibration and prediction sets 
of that dataset to create a system with a controlled, varying background response 
(produced by the water component) and a known analyte (acetone). In our 
analysis, we focus only on the acetone band near 2100 nm, where the large 
signal from water overlaps the weaker acetone band because this system 
simulates a small analyte signal on a large, varying background, yet is easily 
controlled and reproduced. The rearranged calibration and prediction sets allow 
us to explore the cases where the background in new data is not commensurate 
with that seen in the calibration step. These cases should lead to failure of a 
conventional calibration models but not models made robust to external effects, 
which is the result seen in Table I. 

Table I. Calibration and prediction errors for PLS calibration of acetone 
from NIR spectra with varying, uncalibrated background 

Baseline correction 
methods 

Latent 
variables 

Cross-validation 
(%, w/w) 

Prediction 
(%, w/w) Baseline correction 

methods 
Latent 

variables RMSECV Bias RMSEP Bias 
None 6 1.173 -0.037 4.310 3.289 
1st Derivative 5 1.033 -0.032 4.452 -3.515 
Multiplicative Scatter 
Correction 3 0.829 -0.021 7.622 -6.049 

Orthogonal Signal 
Correction 5 0.612 -0.109 15.284 -8.321 

Polynomial fit 
method* 2 1.361 -0.009 13.491 -10.93 

Wavelet baseline 
removal 2 3.171 -0.238 3.207 -0.956 

*The baseline removal method available in Eigenvector Technology's PLS Toolbox. 
Reproduced from reference 16. Copyright 2002 John Wiley and Sons, Ltd. 

Interestingly, several popular background correction methods appear to give 
satisfactory results in cross-validation, but fail spectacularly in the prediction of 
the new data, a consequence of the incomplete and inconsistent removal of 
background by these methods and the failure of the PLS models built on their 
output to generalize well. The wavelet-directed removal of background, while 
seemingly less successful in cross-validation, shows no difference in 
performance on new data, and it permits construction of a much smaller 
calibration model, with only 2 latent variables. Most of the information 
(variation) for the raw NIR spectra of acetone is contained in the range of levels 
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3 to 8, which implies a multiscale nature for the NIR spectra. Wavelet 
preprocessing is successful here because the broad water background is mostly 
confined to scales 10-12, making possible quantitative separation of acetone 
signal from the water background by the wavelet preprocessing step. 

5. Robust Modeling through Multi-Scale Calibration 

While preprocessing helps to create more robust models by upweighting of 
property-related signals and downweighting of interferent effects, it is possible to 
lose some useful information during the preprocessing by projection, wavelet 
filtering or de-noising, since the properties' contribution to the spectrum may be 
small but non-zero for large sections of the frequency domain and the noise that 
correlates interferences to the property may also decrease some correlated 
signals as well. This information would be lost in a removal of components that 
might seem to be contributing to baseline or noise but might also be of vital 
importance for improving predictive regression models. Similarly, when the 
analyte signal is multiscale in nature, selection of single wavelengths, or of bands 
of wavelength, also loses information though the truncation process (17,18). An 
alternative to component removal is needed to improve model robustness 
without loss of information on the property of interest. 

It is known that the statistical characteristics (e.g., the moments) of the raw 
spectra remain the same at each frequency scale after wavelet decomposition, 
because a linear transform such as the wavelet transform conserves them. 
Therefore, the frequency components of spectra obtained by a wavelet 
decomposition using the WP algorithm described above may be modeled 
separately at different frequency scales, if the linear correlative relationship 
between the raw spectra and the target property can be statistically described. As 
a result, it should be possible to implement regression analysis on dual-domain 
(i.e., wavelength-frequency) spectra over the entire wavelength and frequency 
domains at the same time, and unlike wavelength selection methods or the 
wholesale removal of scales to strip background from signals, this modeling 
should not cause significant information loss because no truncation is involved. 
The regression analysis on a dual-domain spectral set is a two-step procedure, 
done in a way similar to that used for regular (single-domain) regression 
methods (17,18). The first step is to establish a dual-domain regression model in 
a calibration of the m x 1 dependent vector y (the property) on a set of 
independent variables contained in a multi-scale spectral tensor X {X*, k = 1,2, 
...,/+1}. The second step is to predict values for the new properties based on a 
prediction s e t X u

= { X r

! > u . . . . xVt.u} 1. 
Consider the combination of a set of single-domain regression models 
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^ = Z * k P k + e E(e) = 0, Cov(e) = a2I (2) 
k=l 

where P* is the p x 1 regression coefficient vector for the frequency component 
at the kth scale in the single-domain spectra, e denotes an m x 1 error vector, 
and E() and Cov() are the expectation and covariance, respectively. The goal of 
the multi-scale regression analysis is to calculate the matrix of regression 
coefficients B = {P/, , p / + /} with the lowest associated error of prediction when 
applied to new samples spanned by the calibration. While any regression method 
could be used in building the regression relationship, we have considered PLS 
and PCR to date (19). 

Exact solution of the dual-domain calibration defined in equation (2) for the 
optimal regression model defined there is not straightforward, but satisfactory 
performance may be obtained by an approximate solution involving a weighted 
average of the /+1 single-scale calibration models. For each of the /+1 
regressions, the scalar g k defines the weight for the kth single-domain calibration 
model, as determined by cross-validation of the calibration set according 

/+/ 
t 0 S k = sk ^^^sk » where sk is the reciprocal of the cross-validation error in 

*=/ 
the calibration set. To see how an approximate solution may be obtained, 
consider dual-domain regression using PLS. Analysis using PCR is similar. In 
the case of PLS, a separate PLS regression on each frequency component (scale) 
of the dual-domain spectral tensor X is first performed with respect to the 
dependent vector y, and the /+1 PLS regression vectors obtained are then 
weighted according to their relative predictive ability for the target, as judged by 
cross-validation. The frequency component with the highest predictive 
relationship to the analytic target will gain the highest weight, and the one with 
the least predictive relationship (where information is minimal) will receive a 
correspondingly small, but non-zero, weight. In this way, all scales contribute to 
the overall regression model, and all wavelengths also contribute, hence the term 
dual-domain regression. 

In the prediction step with the PLS dual domain model, an unknown sample 
xT

u is first decomposed by the WP algorithm, followed by multiplication of the 
frequency components xT

k u (k = l,2,...l, 1+1) with the weighted kth regression 

vector according to the relation yu =^Txlu/3k . 
k=l 

Because the weighting of the regression defined in equation (2) combines 
the sets of latent variables generated from the separate analyses of the wavelet 
decompositions at different scales, this defines a multiscale regression model 
combining information from both the wavelength and frequency (scale) domains, 
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but there will be only a single set of latent variables produced from dual-domain 
PLS or PCR, just as in conventional PLS or PCR. However, the weighted latent 
variables produced by dual-domain PCR and PLS, in general, will differ from 
those produced by conventional PCR and PLS, respectively, because of the 
weighting of the sets of latent variables for the different scales. 

4 6 8 
Number of Latent Variables 

12 

Figure 4: Starch prediction of Cargill corn samples measured on instrument 
mp5 using several PLS models. Modified from reference 19. Copyright 2003, 

John Wiley and Sons, Ltd. 

The multiscale analysis offers real advantages over conventional calibration, 
as Figure 4 shows. There, dual-domain PLS regression (DDPLS) is compared 
with conventional PLS regression (19). The DDPLS shows better performance 
because of the multi-scale advantage gained from the parallel analyses. 
Interestingly, PLS regression done on all wavelet coefficients at once (19) or 
PLS regression done on DWT coefficients (20) loses the multi-scale benefit. 

Dual-domain regression offers many of the advantages of local methods 
while retaining global information. We are exploring ways of improving the 
multiscale nature of the method and of applying the method to strengthen 
multivariate calibrations. 
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Chapter 3 

Interpretation and Validation of PLS Models 
for Microarray Data 

Fredrik Pettersson and Anders Berglund 

Research Group for Chemometrics, Department of Chemistry, 
Umeå University, Umeå, Sweden 

Introduction 

By the use of microarray technologies gene expression can be monitored on 
genomic scale in a high throughput manner. The Ml power of these techniques 
has been unleashed, as the sequence information from large genomic sequencing 
projects such as HUGO has been deposited. An important advantage of 
microarray experiments is that the relative low cost and ease of use makes it 
practical to do detailed and systematic studies (1-3). The number of potential 
genes in a genome easily reaches many thousands. With microarray analysis the 
global expression of these genes can be monitored on a single chip in one single 
experiment. 

Each microarray study results in a data matrix where the number of 
variables (genes) far exceeds the number of observations (experiments). 
Microarray expression data is often ill conditioned as it is noisy and variables are 
collinear with a high degree of missing values. Poor reproducibility is a main 
issue. The problem is no longer to obtain the data but to extract the knowledge 
that is embedded in the data. As classical statistical methods such as pair wise t-
tests are not well suited for this kind of data structures a demand for new better-
suited techniques is emerging. Today techniques such as hierarchical clustering, 
k-means clustering and self-organizing maps are used for analyzing microarray 
expression data. 

© 2005 American Chemical Society 31 
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The use of microarrays has in many ways revolutionized gene expression 
analysis with a large number of interesting applications. The data mining strategy 
used to interpret microarray data depends on the experimental design and can be 
broadly divided into two categories: coordinated gene expression and differential 
gene expression. Coordinated gene expression analysis involves the assessment 
of a large number of genes over a period of time such as variation during the cell 
cycle. The differential gene expression approach generally consists of pair wise 
comparisons between normal/abnormal samples. We will focus on the latter in 
this paper. 

Microarray expression analysis is a powerful tool in functional genomics 
where the aim is to assess functional properties of genes. The basic assumption 
that genes with similar patterns of regulation over different conditions have 
similar function and may be involved in the same pathways is generally used to 
assign functional properties to unknown genes. This information can then be 
used to construct regulatory networks, to find disease-associated genes (potential 
drug targets) and to find interacting components. 

Another important application is to perform expression profile based disease 
classification/diagnosis. Diseases with similar symptoms may have different 
underlying mechanisms and should be treated according to the underlying 
mechanism and not the symptom. Tumors with similar histopathological 
appearance can follow significantly different clinical courses and show different 
responses to treatment. Disease classification by analyzing expression profiles 
shows a new way of determining the correct treatment and thereby increasing the 
success rate and avoiding toxic side effects. A lot of efforts have been put 
especially in the case of cancer class prediction. The expression data is highly 
complex with many independent sources of variation. The success of this 
approach is highly dependent on the development of clustering- and 
classification-methods that can deal with this data with highest possible 
specificity and sensitivity. Except for being accurate it is also important that the 
analysis methods are fast and interpretable both statistically and biologically. 
The methods applied today perform reasonably well but not without some 
misclassifications. 

PLS, partial least squares, has shown to be a powerful method for 
performing multivariate statistical analysis on similarly conditioned datasets in 
the field of chemometrics (4). PLS has recently been applied for studies of 
coordinated (5) as well as differential geneexpression (6). As previously 
mentioned microarray data often is very noisy due to the experimental procedure 
and consists of a large number of variables that far exceeds the number of 
observations. When analyzing this kind of data there are two obvious risks. It is 
easy to obtain overfitted models with poor predictability. With a huge number of 
variables there is an increasing risk of getting false positives just by chance. In 
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this work we investigate how to check if a PLS model is overfitted or not and 
how to determine which genes that are most important for discriminating 
between biological samples of different types. One important step is to define a 
cut-off value where one can say that all the genes above the value is correlated to 
the response with a certain degree of confidence. 

Experimental 

In this project we have analyzed a well-studied dataset including expression 
values for 7070 genes for 72 leukemia samples. The experiments were 
performed by Golub et al. (7). The samples were prepared and categorized by 
histopathological appearance and marker specific recognition at collaborating 
hospitals. The samples were taken from bone marrow or peripheral blood and 
classified as type ALL (lymphoid origin) or AML (myeloid origin). The data 
were divided into a modeling set consisting of 38 samples and an independent 
test set consisting of 34 samples. The chips used were of Affymetrix type and the 
gene expression levels pre-normalized. Nguyen et al. have earlier also analyzed 
this data set with PLS. (6) 

Methods 

PLS-DA 

In PLS-DA dummy variables are used for describing the class belonging of 
the different samples. This is done by creating binary variables, one variable for 
each class, with for example ones and zeros, where a one represents that the 
object belongs to that class. With a PLS-DA model it is possible to predict class 
belonging by looking at the predicted class variable. A value above 0.5 means 
that the specific sample belongs to that class and below 0.5 that it does not 
belong to that class. 

Generation of a ranking list 

When we know that we have a good model and we can make predictions the 
next interesting step is to investigate which genes differentiates between ALL 
and AML samples. The obvious way is to look at the regression coefficients 
from the PLS model and rank them according to their size. If a gene has a large 
regression coefficient with AML as a response it means that the gene is 
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upregulated for AML and vice verse for ALL. The problem with the regression 
coefficients is that they are affected by the variation in the X-matrix that is not 
correlated to the response (8). The 02-PLS algorithm by Trygg et al. gives a 
PLS model which is only describing the variance that is correlated to the 
response. This is done by first removing the non-corrected variance in the X -
matrix. Another way to remove the variation in the X-matrix is to use some of 
the OSC-algorithms that are available, but they are not as simple to use as the 
02-PLS algorithm. 

Trygg et al. (8) also showed that, for a single PLS model, the first weight 
vector of a PLS model, w l , is the best estimate of how important a variable is for 
describing the response. Later components are only needed for correcting the 
predictions made by the first component for all the variation in the X-matrix that 
is not correlated to the response but still affects the prediction. The wl vector 
has with success been used for finding genes with cell cycle-coupled 
transcription (5). Another alternative for ranking the gene importance would be 
to use the VIP value which is a summation of the absolute value for all the w-
vectors in a PLS model taking into account how much each components 
explains. This value suffers from the same problem as using the regression 
coefficients, it takes into account all the components in the PLS model. 

Finding a cutoff value 

The next step, after making a ranking list of the importance each gene, is to 
find a cut-off value where one can rank, with a certain degree of confidence, all 
the genes above the cutoff as correlated to the response with a certain degree of 
confidence. This can be done by, for example, using random genes for finding a 
proper cut-off value. If the genes are only permuted, the same error distribution 
and variance is kept whereas the correlation to the response is changed. This 
approach was used for finding a cut-off value for the number of genes with cell 
cycle-coupled transcription (5). 

A PLS model is calculated using the randomized data set and the wl-vector 
is used for finding an appropriate cut-off. To avoid skews when comparing the 
results the weight vector is not normalized to unit length as it generally is, since 
normalization would increase the weights for the simulated genes. 

The importance of the significance level of the regression can be illustrated 
by considering the last candidate gene in the ranking list. If the expression 
profile of this gene is not dependent on ALL or A M L the probability of scoring 
at least this high, purely by random chance, is (100*a) percent. That is, the p-
value for the specific gene is a. Conversely, the probability that the gene's 
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expression is genuinely related to ALL or A M L is approximately equal to (1- a). 
The smaller the value of a, the fewer false positives there will be among the 
candidate genes, but also the more false negatives there will be among the genes 
below the threshold. 

Results and Discussion 

PLS-DA model for ALL/AML 

Figure 1 shows the two first t-scores plotted against each other for a PLS-
DA model describing the differences between ALL and AML. A separation 
between the two types is seen in figure 1, both for the modeling set and the test 
set. That the separation is seen also in the test set is assuring, since these samples 
have not been part of the model and thus the separation is not a consequence of 
an overfitted model. This is always a problem when there are many thousand of 
variables and relatively few observations. The predictions of the response for 
the test set samples shows that all test set samples, as well as the modeling set 
samples, are predicted correctly. 

An external test set is the best way to evaluate the predictive power of a 
model but it is not always possible to have an external test, below we will show 
that there are alternative ways to evaluate the predictive power of a model. 

The PLS model with three components explains 95.8% (R2Y) of the 
variance in Y, with a corresponding cross-validated (7 cross-validation groups) 
value of 80.6% (Q2). Only 33.4% of the variance in the X-matrix are used (gene 
expressions) which indicates that most of the genes are not related to the 
response (AML-ALL separation) at all. 

Validation ofQ2 andR2Y 

These values can be further validated by a permutation test where the 
response is permuted and new models are calculated using the permuted 
response . If R2Y and Q2 are equally high as the original model the statistical 
values for the model is not trustworthy since even a random response and, hence 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
3

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



36 

40000 

30000 

20000 

10000 

0 

-10000 

-20000 

-30000 

-40000 

-50000 

• A A A 

J* A 

D * n m a . • • • • A A A ^ A' 

A ^ 

A • A 
A A 

A 

• 

-80000 -60000 -40000 -20000 

t1 

20000 40000 

Figure 1 Score plot for the PLS-DA model discriminating ALL and AML 
samples. • - ALL modeling set, o - ALL test set, • - AML modeling set, 
• - AML test set 
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a random model can give equally high values. Figure 2 shows the results from 
such a permutation study where 50 permutations have been made. One can see 
that the R2Y value is equally high for all the permuted models as it is for the 
original model, top right. This is not surprising since there are so many variables, 
and few objects, there will always be some variables that are correlated with the 
response. The Q2 at the contrary, shows a low value for all the permuted models. 
This indicates that the high Q2 for our model is not due to a chance correlation. 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
Correlation 

Figure 2 Validation of the Q2 and R2Y values from the PLS model for A L L 
and AML. The x-axis shows the correlation between the original y-response 
and the permuted y-response. The box and triangle up to the right are from 
the original non-permuted model while all the others are from the models 
with a permuted y-response. Notable is that all models have a high R2Y but 
only the original model has a Q2 higher than 0.8. • - Q2 A - R2Y 

Comparing wl and regression coefficients 

Figure 3 shows the coefficients from the PLS model plotted vs. the first 
weight vector wl . As figure 3 shows there is a correlation between these two, but 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
3

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



38 

also that there are genes that a deviating from the line. Thus, if a ranking list 
would be generated from these two different vectors, the ordering of the genes 
would not be the same. 

0.15 

Figure 3 The regression coefficients from the PLS model with 3 components 
vs. the first weight vector, w l . 

Fnding a cut-off value 

A new X-matrix was created by column-wise permutation of the elements. 
This was repeated ten times so that the resulting randomized X-matrix consists 
of 70700 variables. This was both done for the modeling set and for the whole 
data set where the modeling and the test set was merged. By merging the data 
sets we get more observations in the resulting dataset and it is possible to get 
more genes above the threshold value. 
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Using our cut-off strategy, with a significance level of 0.5%, 122 genes 
scored above the threshold, for the modeling set. If all the observations are used, 
both from the test and the modeling set, 177 genes scores above the threshold. 

Comparing the top 122 genes from the modeling set and the top 177 
genes from the merged dataset reveals that 100 of the 122 genes are also present 
in the 177 list. Thus, there is not a perfect overlap between the two lists since 22 
genes from the 122 list are not present in the 177 list. This imply that when we 
add more observations, the ranking list also changes, some genes get more 
importance and vice versa. Further, the first 34 genes in the 122 ranking list are 
among the 177 genes from the ranking list based on all observations. 

This difference can either be related to the selection of to many genes, genes 
with no differencing power between ALL and AML samples, or that the addition 
of more samples actually adds new information which is not present in the 
modeling set. 

Discussion and Conclusion 

In this work we have successfully used a multivariate projection method, 
PLS-DA, to perform molecular classification of leukemia samples. We have 
obtained predictive models with the ability to discriminate between tumors of 
myeloid or lymphoid origin with no misclassifications. PLS-DA is highly useful 
for obtaining predictive models with the ability to discriminate between different 
types of samples still we have to be cautious so that models are not overfitted 
and that genes do not end up high in a ranking list just by coincidence. 
Traditionally when analyzing PLS models variables are ranked by their 
regression coefficients. This may be misleading since systematic variation in the 
X-matrix unrelated to the response is included in the regression coefficients. 
Another option is to rank the genes by their wl values. Our study shows that 
genes are differently ranked using the two different ways of interpreting the 
variables. We have also presented a way of defining a cut-off value where one 
can say that all of the genes above the cutoff value in a ranking list is correlated 
to the response with a certain degree of confidence. When using all observations 
from both the test and modeling set 177 genes scored above the threshold value 
at a significance level of 0.5%. Models can be validated by permuting the dataset 
so that response values are randomly shifted between the different observations. 
All permuted models show poor predictive properties (Q2) while the correlation 
(R2Y) is always high. This is a consequence of the large number of genes 
(7070). 
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Chapter 4 

Chemoinformatics: Perspectives and Challenges 

Ling Xue1, Florence L. Stahura1, and Jürgen Bajorath1,2,* 

1Department of Computer-Aided Drug Discovery, Albany Molecular 
Research, Inc. (AMRI), AMRI Bothell Research Center (AMRI-BRC), 

18804 North Creek Parkway, Bothell, WA 98011 
2Department of Biological Structure, University of Washington, 

Seattle, WA 98195 

This chapter discusses some aspects of 
chemoinformatics as an evolving discipline in the 
context of life science research. Highlighted topics 
include selected scientific questions and also more 
strategic issues such as the unification of diverse 
informatics approaches or the formation of viable 
interfaces with experimental programs. It is hoped 
that this chapter might aid in putting some of the 
current trends in the chemoinformatics field into 
perspective. 

The term chemoinformatics was probably first introduced in the 
literature in 1998 by Frank Brown (/). Although this might indicate 
that we are looking at a very young discipline, many -but not all- of the 
activities that are currently categorized under the chemoinformatics 
label have a longstanding history in computational chemistry research. 
The dominant theme of informatics-driven activities in life science 
research is the transformation of rapidly growing amounts of biological 
and chemical data into knowledge. However, this general theme covers 
(in chemistry, biology, and pharmacology) a diverse array of research 
and development activities and different applications. 

© 2005 American Chemical Society 41 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
4

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



42 

What Is It? 

Similar to the situation in biology, the advent of high-throughput 
technologies in chemistry in the mid 1990s has been a driving force for 
the introduction and increasing popularity of chemical informatics. 
Whereas in biology the analysis of large amounts of DNA sequence 
data became a critical issue, combinatorial chemistry and the ensuing 
needs for systematic synthesis planning and compound library design 
and management triggered the development of informatics tools. 
However, chemoinformatics, as we define and understand it today has 
at least two major roots, high-throughput chemistry technologies and, 
in addition, the qualitative and quantitative computational analysis of 
structure-activity relationships of small molecules (2). Accordingly, the 
present spectrum of chemoinformatics approaches includes compound 
registration and database management, reaction and library design, 
molecular similarity and diversity analysis, and all methods that 
correlate structural features, physico-chemical properties, and 
biological activities of compounds, regardless of their sources (1,2). 
Currently available structure/property-activity methodologies are 
highly diverse and include different types of clustering and database 
mining methods, multi-dimensional QSAR (quantitative structure-
activity-relationship) approaches, similarity search tools, and virtual (or 
in silico) screening approaches (3). In addition, statistical methods 
designed to analyze HTS (high-throughput screening) data and derive 
predictive models of biological activity are also regarded as a part of 
chemoinformatics (3). Moreover, the prediction of (in vivo) ADMET 
(absorption, distribution, metabolism, excretion, toxicology) 
characteristics of active compounds is often considered a 
chemoinformatics approach, although methods employed in this 
context range from statistical analysis and QSAR-type approaches to 
quantum-chemical calculations and modeling of enzyme reactions (4). 

There is no doubt that it is often difficult to say where 
chemoinformatics research begins and ends. The boundaries to other 
computational disciplines are ambiguous, which is not surprising for an 
evolving R&D (research and development) area. However, as discussed 
later on, rigidly distinguishing between different informatics-driven 
research fields may indeed not be very meaningful. It is also worth 
noting that many of the current activities in biological and, in 
particular, chemical informatics have evolved in drug discovery 
settings. Thus, in order to appreciate developments and trends in this 
field, it is often helpful to also reflect on the current situation in 
pharmaceutical research. 
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Examples of Popular Topics 

What are some of the current focal points of chemoinformatics 
R&D? In the pharmaceutical industry, the development and continuous 
improvement of efficient, flexible, and relational infrastructures for 
compound registration, acquisition, and management, including Web-
based systems, continues to be an important task, just as it has been 
from the beginning. Essentially any pharmaceutical or chemical 
company and also any chemistry department in academia are faced 
with the challenge of developing, analyzing, and maintaining 
compound databases of dimensions never seen before, often containing 
literally millions of structures. Thus, there is little doubt that the need 
for efficient and easily accessible and exchangeable database structures 
and management systems will further grow. 

On the research front, much effort in the field has recently been 
dedicated to the systematic analysis and comparison of molecular 
characteristics and property distributions in different databases. Many 
of these studies aim to improve our understanding of what renders a 
molecule drug-like or try to systematically distinguish between drugs 
and non-drugs (5). Furthermore, a variety of different database mining 
and virtual screening methods have been introduced in recent years to 
effectively search for active compounds (J). Similar to the situation in 
database management, a major challenge for these methods has been 
the dramatically increasing size of compound sources. This requirement 
alone significantly influences method development activities. For 
example, very large numbers of database compounds ("real" and/or 
virtual) prohibit the application of classification methods that rely on 
pair-wise compound or distance comparisons in chemical space (such 
as conventional clustering techniques) and have spurred on the 
development of currently popular low-dimensional partitioning 
methods (3,6). 

Current Trends 

A few general trends can also be observed that have begun to 
influence the direction of R&D efforts in the chemoinformatics arena. 
It has been becoming increasingly clear over the past few years that 
high-throughput technologies alone cannot be expected to revolutionize 
drug discovery and significantly increase its ultimate output (7). 
Accordingly, chemistry has begun to depart again from a pure numbers 
game ("make more compounds - screen them faster") and focus more 
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on knowledge-based approaches. For example, whereas the design and 
generation of diverse combinatorial and large virtual libraries 
dominated many computational efforts in the field early on, the 
emphasis has now shifted to designing smaller but "smarter" (e.g., 
enriched with drug-like molecules) and target-focused compound 
libraries (2). 

It has also become clear that achieving desired biological activity and 
potency of hits or leads is necessary but not sufficient to produce high-
quality drug candidates. This is illustrated by the dramatic attrition rates 
of compounds during clinical trials, which is currently probably the 
major bottleneck in drug discovery (2). This situation has influenced 
chemoinformatics R&D and is responsible for the significantly 
increasing interest in the development of computational ADMET 
concepts (4,8). 

Challenges 

As one might expect, taking into account the rapid growth 
chemoinformatics has experienced over just a few years, the discipline 
also faces a number of problems and critical issues that could either 
substantially hinder further progress or, if successfully resolved or 
circumvented, provide a wealth of new opportunities (8). Some of these 
difficulties can be attributed to the fact that much of the 
chemoinformatics work is currently done in drug discovery 
environments. An obvious (albeit understandable) "strategic" drawback 
of this situation is that many of the developments and findings are kept 
proprietary, at least for an extended period of time. These include, 
among others, internal database structures and information systems 
and, equally -if not more- important, the results of computational 
screening or lead identification programs and the experimental 
evaluation of focused libraries. A consequence of this situation is that 
the literature in the area of chemical information and informatics is 
currently dominated by publication of novel methods, whereas reports 
of practical (drug discovery) applications are the exception, rather than 
the rule. However, it is worth noting that specific journals have become 
a forum for chemoinformatics R&D, in particular, the Journal of 
Chemical Information and Computer Sciences for method development 
and the Journal of Medicinal Chemistry for drug discovery applications 
and case studies. This makes it in general difficult to judge about the 
true performance of chemoinformatics approaches and put them into 
scientific perspective. In order to establish generally acceptable 
standards for the comparison of different methods, the 
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chemoinformatics field would indeed greatly benefit from the 
availability of more "real life" examples and the disclosure of more 
high-quality datasets (e.g., HTS data or specifically designed 
compound libraries). In addition to this rather general aspect, there are 
also a number of specific challenges. 

Unresolved Scientific Questions 

Despite the fast-paced development of different informatics tools, 
some fundamental scientific issues remain to be understood in order to 
increase the accuracy of computational methods and their impact on 
chemistry programs (<?). Among these, the difficulty to reliably predict 
in vivo properties of clinical candidates is probably one of the 
scientifically most complex issues. Despite significant interest in these 
approaches, computational progress is hindered by the fact that many 
ADMET-relevant physiological effects are themselves not yet well 
understood. Thus, since multiple effects usually influence the in vivo 
fate of compounds, it is in general difficult to assemble accurate and 
sufficiently large compound training sets for various ADMET 
predictions. Consequently, much remains to be learned until sound and 
more widely applicable computational models can be built. 

Other critical questions are much more chemistry-specific. For 
example, for compound design, the current inability to accurately 
predict binding energies and affinities, regardless of whether they are 
calculated from QSAR-type analysis or simulations of protein-ligand 
complexes, continues to be a major caveat. Furthermore, limited 
synthetic feasibility of many computer-designed molecules continues to 
present a major difficulty for the integration of informatics and 
chemistry efforts, despite the fact that various programs for de novo 
compound design are already available of for at least a decade. Thus, 
the development of predictive methods to increase synthetic success 
rates of designed molecules would also be an important step forward. 
To give another example, uncertainties in calculating bioactive three-
dimensional molecular conformations have a significant negative 
impact on 3D database and pharmacophore search methods and 3D 
QSAR techniques, the latter being a cornerstone methodology for lead 
optimization programs. In all of these instances, there is significant 
room for improving the scientific basis and accuracy of 
chemoinformatics approaches. 

It might also be mentioned that the boundaries between molecular 
modeling, which is long established as a computational discipline, and 
informatics have become rather fluent. For example, knowledge-based 
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modeling approaches make use of rapidly growing databases such as 
the Protein Data Bank or the Cambridge Crystallographic Database, 
which often requires the application of advanced data mining 
techniques. In addition to biological and chemical informatics, 
molecular modeling significantly adds to the spectrum of 
computational approaches that are available for the life sciences. 

Education 

A different yet equally critical issue for the future of the young 
chemoinformatics discipline is the fact that curricula and teaching 
programs that merge computer science and chemistry still need to be 
established. However, current developments are promising. The first 
graduate and postgraduate courses in chemical informatics have been 
introduced in the US and Europe (P), or are at least in the planning 
stage. Similar to the situation in bioinformatics (at least until very 
recently), the majority of scientists who currently work on 
chemoinformatics problems come from different backgrounds and 
many have more or less trained themselves. It is anticipated that the 
demand for young scientists who can successfully operate at the 
interface between computer science and chemistry will substantially 
grow in the coming years. Thus, academia is challenged with providing 
relevant educational opportunities in this area, either as part of 
conventional chemistry studies or standalone programs. 

Opportunities 

Any of the general or more specific challenges that 
chemoinformatics faces today (as discussed above) would, if 
successfully tackled, bring the field a significant step forward and 
further improve the impact on life science research. In addition, some 
other areas can be pointed out that might provide some significant 
opportunities for growth. Without doubt, more progress will be made in 
the development of algorithms and methodologies for 
chemoinformatics applications, considering the substantial resources 
that are being dedicated to these efforts. These developments will be 
supported by the availability of faster computers, efficient clusters, and 
essentially unlimited storage space. As databases structures and 
chemical information systems mature, deriving knowledge from raw 
chemical data will also become easier. However, beyond algorithms 
and databases, other significant future opportunities exist in closely 
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integrating chemoinformatics and experimental programs (2) and in 
merging different informatics disciplines in the context of life science 
research. 

Interfaces with Experimental Research 

If closely interfaced, chemoinformatics tools and approaches can 
have a substantial impact on established experimental disciplines, at 
least in drug discovery. Although a number of pilot studies and 
programs already exist that highlight the success of such integration 
efforts (2), there is much room for improvement. In order to illustrate 
some of these opportunities, we will discuss two examples. 

Virtual and High-Throughput Screening 

Despite the many technical advances in HTS towards even higher 
screening throughput, it is increasingly being recognized that virtual 
screening (VS) and other chemoinformatics tools can significantly aid 
in improving the hit rate of HTS programs, reducing the number of 
compounds to be screened (either by building predictive models or by 
focusing of screening libraries), and in rationalizing the results (10,11). 
This is perhaps best exemplified by the focused or sequential screening 
paradigm where HTS and VS are used in an iterative manner (10,11). 
In this case, smaller subsets are selected from source libraries by in 
silico screening and subjected to HTS. The results are then analyzed 
and used to refine the VS approach for the next iteration, and the 
process is continued until a sufficient number of high-quality hits are 
obtained. Figure 1 illustrates this process and shows different 
informatics components that aid in sequential screening. 

It is likely that the need for informatics-driven iterative screening 
protocols may soon increase, if the numbers of potential therapeutic 
targets and the sizes of compound libraries continue to grow at present 
rates. However, for chemoinformatics, the interface between HTS and 
VS provides challenges and opportunities beyond VS methodologies. 
For example, for iterative screening to be practical, highly flexible 
compound registration, handling, and database management systems 
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Figure 1. Iterative screening by combining HTS and VS. For VS, many 
different methods are available including compound clustering and 
partitioning or similarity searching (11). Following the iterative 
screening approach, small library subsets (in grey) are 
computationally selected and screened until a sufficient number of hits 
are obtained. During these iterations, the VS calculations are 
continuously refined. Predictive models of biological activity can also 
be derived from partial HTS dataset (in black) and used as a basis for 
subset selection. Other chemoinformatics components required to 
support the sequential screening process are circled. 
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must be implemented so that individual compounds can be cherry-
picked and assembled from many different screening plates. In 
addition, requirements for efficient analysis and visualization of assay 
data will increase to ensure meaningful selection of compound subsets 
for screening. 

Target validation chemistry 

Experimental target validation continues to be another major 
bottleneck in drug discovery research (7,8). For informatics disciplines, 
the key here is to help bridge the gap between the genome, proteome 
(best defined as the sum of all detectable gene products), and 
therapeutically relevant protein targets (a relatively small subset of the 
proteome). Chemistry has begun to significantly impact this process 
through chemical genomics ("finding all ligands for all targets") and 
chemical genetics ("using small molecular probes for selectively 
modulate target function across target families") approaches (12,13). 
Chemoinformatics provides significant opportunities to support these 
efforts, in particular, through the design, evaluation, and management 
of target-focused compound libraries or the design of compounds that 
specifically affect single targets within a family, as very well-illustrated 
in the study of protein kinases (13). Clearly, a deeper understanding of 
phenomena such as, for example, protein folding, the role of protein 
flexibility for function, or metabolic pathways (and, ultimately, reliable 
predictions) would much improve the basis for effective protein target 
validation, beyond genetic manipulations or chemical interference. 

Converging Disciplines 

Another question that we feel might be well-worth asking is whether 
or not it is meaningful to strictly distinguish between bio- and 
chemoinformatics as disciplines? Clearly, in the context of the popular 
genome-to-proteome-to-drug paradigm, the distinction becomes at least 
to some extent artificial, since sequence, structure, and chemical spaces 
must be "reduced" in a meaningful way to reach the ultimate goal, a 
new drug candidate (schematically illustrated in Figure 2). This 
integrated approach is particularly critical during the early stages of 
discovery. Chemical genomics and genetics (where bioinformatics 
analysis of target families and chemoinformatics must go hand in hand) 
provide very good examples for the complementary nature of many of 
these activities. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
4

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



50 

Genome Chemical space 

Drug lead 

Figure 2. The schematic illustrates the reduction of biological and 
chemical data and the derivation and exploitation of knowledge about 
specific interactions (following the "gene-to-proteome-to-drug" or 
similar paradigms). 

In drug discovery settings, such insights have already changed the 
informatics landscape and triggered the introduction of more global 
concepts. This is reflected by the increasing use of terms such as 
"research informatics" or "drug discovery informatics" (14). These 
concepts not only attempt to unify diverse data structures but also to 
integrate diverse biological and chemical systems that are under 
investigation (14). 

Similar Algorithms, Diverse Applications 

From a discovery point of view, such integration efforts certainly 
make sense. But what about the scientific basis for closer integration of 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
4

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



(or overlap between) biological and chemical informatics? Figure 3 
summarizes what we call the "hierarchy" of biological and chemical 
informatics, which essentially describes the subjects at different stages 
of typical bio- or chemoinformatics analysis. 

Biology 
DNA sequence 
Protein sequence 
Sequence similarity 
Family 
Structure 
Interaction 
Function 
Intervention 

Chemistry 
Molecular composition 
Connectivity (graph) 
Molecular similarity 
Chemotype 
Structure 
Interaction 
Specific activity 
Drug 

Figure 3. Hierarchical organization of topics in bio- and 
chemoinformatics 

Proceeding from molecular composition to two- and three-
dimensional structure and function presents a number of similar 
challenges, regardless of whether the starting point is DNA or a 
chemical element distribution (or whether we are focusing on the 
macromolecular or small molecular level). This general theme has 
methodological implications. A variety of algorithms and 
computational techniques that are widely used in chemoinformatics 
such as clustering methods, principal component analysis, genetic 
algorithms, self-organizing maps, or neural nets (3) are also crucial for 
many applications in bioinformatics such a, for example, the analysis of 
microarray data or the correlation of expression patterns and 
experimental conditions (15). Thus, many algorithms and informatics 
methods are transferable and applicable to a wide range of biological 
and chemical problems. This supports the design and implementation 
of more global informatics concepts in life science research. To give an 
example, the development of advanced relational databases linking test 
compounds with assay data and other types of biological target-related 
or pharmacological information provides an important component at 
the interface between experimental and computational research as well 
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as biology and chemistry. Clearly, as information and knowledge grow, 
the boundaries between these disciplines begin to disappear. 

Summary and Outlook 

Much progress has been made in recent years in the development of 
computational methods for organization and mining of chemical 
databases or molecular property predictions. As young and rapidly 
evolving discipline, chemoinformatics still defines itself and we can 
anticipate that the spectrum of chemical informatics approaches will 
continue to undergo significant changes for some time to come. To 
appreciate some of the current activities and trends in this field, it is 
helpful to consider that much of what we understand as 
chemoinformatics today has been evolved in drug discovery 
environments. 

Despite the development of many new computational techniques for 
chemistry applications, some important scientific topics await further 
progress. For example, the accuracy of computational models and its 
immediate impact on chemistry programs could be much improved, if it 
were possible to more accurately predict molecular binding energies or 
synthetic yields. Importantly, in drug discovery, informatics methods 
are challenged to address a major bottleneck, the very high attrition 
rates of clinical candidate molecules. It is therefore not surprising that 
ADMET parameters are already beginning to be addressed by 
informatics approaches during the early stages of discovery. However, 
the computational analysis of these late stage problems is currently still 
in its infancy. 

Other informatics approaches currently aim at the design and 
compilation of increasingly large databases that combine biological and 
chemical knowledge such as protein structures, cellular functions, 
known ligands and binding profiles, or screening data. It is anticipated 
that such databases will not only substantially grow in years to come, 
but that their architectures will mature, providing easier and more 
widely available access. In addition, there are certainly other 
opportunities for further development and growth of chemically 
oriented informatics R&D that are not mentioned herein. In general, 
however, many of these efforts are likely to significantly depend on 
integration, either with experimental disciplines or bioinformatics. 
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Chapter 5 

Mathematics as a Basis for Chemistry 

G. W. A. Milne 

Middle House, Fulbrook, Oxon OX18 4BA, United Kingdom 

Mathematics underlies much of chemistry and is used as a tool 
in many branches of the science. In some areas, particularly 
those in which structure manipulation is important, mathematics 
has exerted a more significant pressure and has been pivotal in 
the development of these chemistry sub-disciplines. 

Introduction 

It is common to view the sciences in a continuum ranging from the hard, or 
deductive sciences at one extreme to the soft or descriptive sciences at the other. 
In such a framework, mathematics clearly occupies one extremity, closely followed 
by physics. Further along this scale, one finds the more descriptive sciences, such 
as chemistry and biology and further still, subjects such as medicine, psychology 
and psychiatry which traditionally, have been highly empirical. A perspective held 
by many scientists is that this series is, in the intellectual sense, vertical, with 
mathematics at the top; the harder sciences are in some way the progenitors and 
disciplines lower down the scale stem from and depend upon these harder sciences 
for their rationales. 

This implication has some validity but it fails to recognize that empirical 
science is totally legitimate and can and does make progress with little reference 
to mathematics. It is safe to suggest for example, that botany has advanced to its 
present state of development with little or no assistance from the hard sciences. It 
may be less safe however to suppose that botany and mathematics will never 

© 2005 American Chemical Society 55 
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benefit from one another. The work of Adleman (i), discussed below, in which the 
DNA molecule is used as a digital computer indeed suggests the opposite. 

This paper focuses on the role mathematics has in chemistry, the relationship 
of the two sciences and the impact this has had upon the Journal of Chemical 
Information and Computer Sciences. 

Chemistry Amongst the Sciences 

Most chemists would place chemistry near to physics and mathematics in the 
scale under discussion. This however has not always been the case. Until the 20 th 

century chemistry was a purely empirical science, much as biology is today; its 
move from the cushions of empiricism to the hard bench of numericism began in 
the latter part of the 19th century and while it is now well advanced, it has spawned 
two branches of the discipline. Many chemists view chemical phenomena as 
potentially predictable and calculable while those more attracted to observational 
science thrive in, for example, organic synthesis. Both schools make significant 
contributions to science and society but there is a continuing pressure, from many 
sources, to convert chemistry from an empirical to a theoretical discipline. This 
conversion is intellectually attractive because it signifies an understanding of the 
science. It also has many practical benefits that arise primarily from the control and 
predictability promised by a theoretical discipline. 

Macroscopic and Microscopic Chemistry 

Chemistry can be studied at the microscopic or the macroscopic level. At the 
microscopic level, one is concerned about the details of the structure or behavior 
of single molecules while at the macroscopic level the focus is on the "real-world" 
behavior of associations of very large numbers of molecules. These are truly 
separate camps; a chemist in the first may acquire a profound understanding of the 
structure of benzene but still be unable to guess at its boiling point, determination 
or estimation of which are trivial exercises for someone working at the macroscopic 
level. 

Many feel that an adequate understanding of chemical events at the 
microscopic level will inevitably lead to an unraveling of the problems in 
macroscopic chemistry. This may be true, but others take the view that macroscopic 
behavior must be studied for its own sake. For the first group, mathematics is a 
necessary tool for fundamental research in chemistry while for the second, 
mathematics is an aid with which observations at the macroscopic level can be 
more easily recorded and analyzed. These two viewpoints have become the bases 
for separate sub-disciplines which, respectively, may be termed mathematical 
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chemistry and chemical mathematics. Mathematical chemistry uses mathematics 
strictly as a tool and is discussed only briefly here. Chemical mathematics on the 
other hand has seen much creativity in the approach by mathematicians to long­
standing problems in chemistry and is the main subject of this chapter. 

Mathematical Chemistry 

The credo of the mathematical chemist is that chemical behavior, at any level, 
should be predictable given a complete understanding of atoms and molecules. In 
this light, mathematicians were entirely correct is tackling the structure and 
properties of atoms as a first target. Problems of atomic and molecular structure 
require solution of the Schrddinger equation which is a non-trivial mathematical 
exercise. Much of this task has been reduced to commercially available computer 
code such as Gaussian and solutions with considerable precision are now 
obtainable. In macroscopic problems however, much larger systems must be 
managed and approximations have been necessary in order to complete the 
calculations associated with such systems. 

Chemical Mathematics 

In chemical mathematics, the goal is to use mathematics to restate, explain and 
rationalize chemical knowledge and open new approaches to the prediction of 
chemical phenomena. Graph theory has assumed a major role in this process and 
has facilitated some novel developments in chemical structure theory. 

a. Graph Theory 

Graph theory is a branch of mathematics which has created a new approach to 
chemistry and, while it has not revolutionized the science, it has registered a 
significant impact on it. It has attracted many gifted mathematicians to consider 
chemical structure and, with the intense activity it has generated in the last 30 
years, it has become established as a bona fide branch of both mathematics and 
chemistry. 

The starting point in chemical graph theory is that a chemical structure is a 
graph, which can be manipulated with mathematical techniques. A chemical 
structure is nothing more than a collection of atoms and bonds; if these are 
regarded as nodes and edges, the structure is a chemical graph. Thus the chemical 
notation for methylcyclopropane is paralleled entirely by the corresponding graph, 
described as an "adjacency matrix": 
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Atom 1 

1 
0 1 0 0 

3 
1 
0 
0 

0 
1 
1 

1 
0 

1 

1 
1 
0 

4 

In the matrix, each row describes an atom. Thus in the first row, atom 1 is joined 
to atom 2 but not to atoms 1,3 or 4. The second row describes atom 2, bonded to 
atoms 1,3 and 4, and so on. Al l the information in the structure is in the matrix and 
now can be manipulated mathematically. 

In recent years a great deal of effort has gone into exploring the possibilities 
of this matrix manipulation and it has been shown convincingly that matrices can 
be constructed in which the data are a full and accurate representation of the 
structure. Algorithms that search in large databases for specific structures or 
substructures rest on a basis in graph theory and although the early programs were 
developed from the chemical perspective, the search algorithms all flow from graph 
theory. Likewise, graph theoretical representations of chemical structures have 
proved useful in computer-assisted synthesis design. Enumeration of isomers is a 
task which can only be done reliably by means of chemical graph theory. The 
exploration of structure-property relationships is enormously facilitated by graph 
theory because a graph is a mathematically represented structure and can, by means 
of statistical techniques, be related to any numeric property of the molecule in 
question. 

These are important areas whose exploration, prior to the application of graph 
theory, was very incomplete. The mathematical approach has yielded valuable 
results and each of these topics will be treated very briefly here. 

b. Structure Searching 

In the 1960s, a group at Stanford headed by Lederberg and Djerassi published 
a number of papers (2) on what was known as the "Dendral Project". This was a 
remarkably prescient attempt to deal with problems in organic chemistry from a 
mathematical viewpoint. The Stanford group explored the problems of structure 
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searching and of isomer enumeration and attempted to identify structures from the 
corresponding mass spectra. The project, which lasted for over a decade, had 
limited success because, as is now clear, excessively ambitious problems were 
tackled. 

The basic chemical graph, as can be seen from the example above, contains 
only carbon and only single bonds. Embellishment of both the structure and the 
graph gives: 

in which atom 1 is clearly identified in column 1 as a carbon (atomic number 6) 
bonded to two other carbons and to one oxygen (atomic number 8). A matrix like 
this clearly can be used to search for like fragments in a database. Management of 
non-carbons and of multiple bonds adds complications and most of the 
mathematical chemists who worked in this area, chose, after the Dendral 
experience, to work with alkanes - with only single bonds - and hydrogen atoms are 
ignored for the sake of simplicity. Such approximations have been the basis of 
significant criticism from the chemistry camp, but they have permitted the graph 
theoreticians to make progress with a variety of problems. 

A development that was essential for successful structure searching was the 
Morgan algorithm (3), developed at the Chemical Abstracts Service in 1965. This 
algorithm allowed a canonical and reproducible numbering of the atoms in a 
molecule which made atom-by-atom comparison of structures possible. Instead of 
numbering atoms from left to right or top to bottom, Morgan showed that atoms 
could be numbered hierarchically, from the most highly substituted to the least 
substituted. Thus Morgan numbering changes the methylcyclopropane example 
shown above to: 

Atom 1 

6 0 6 8 6 
6 6 0 0 0 
8 6 6 0 6 
6 6 0 8 0. 
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Atom 1 

1 

4 0 
1 
1 
1 

1 
0 
1 
0 

1 
1 
0 
0 

1 
0 
0 
0 

3 

and his algorithm guarantees that this numbering will be used every time this 
structure is encountered. It should be noted that a simple sort of the rows of the 
matrix places atom 1, the central atom in the Morganized structure, on the top row. 

In 1970, the first widely used algorithms for structure searching became 
available. In essence, these programs sought to identify each non-hydrogen atom 
in a structure in terms of its neighbors and then search the database for structures 
with just such an array of atom-neighbor combinations. Once all such candidates 
have been found they can be examined one by one to determine if the query 
structure is indeed imbedded in the retrieved structure. Thus with a query structure 
1, the first step will retrieve 2,3 and 4, but only 4 will survive the atom-by-atom 
examination. It is this atom-by-atom search for which the Morgan algorithm is 
crucial. 

The early programs were cumbersome because they depended upon the user 
to define the query structure and to manage much of the complex Boolean logic 
that was necessary to distill the raw search results to a useful form. In the thirty 
years since then, many new algorithms have appeared; a new search program now 
barely rates a publication. The modern programs have taken advantage of the 
greater compute power that is readily available and they have eliminated all of the 
troublesome details that characterized their predecessors. It is now commonplace 
to frame a simple question ("Find this substructure") and elicit a simple answer ("It 
is contained in 934 structures in this database") but the improvements are entirely 

1 2 3 4 
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in the user interfaces. The basic search process is no different from what it was in 
the Dendral algorithms. 

The underlying graph theoretical principles in these search algorithms have 
allowed the development of much more sophisticated search techniques. The 
simple substructure search has always been heavily used because it enables one to 
answer important questions, but it has now been reinforced by superstructure and 
similarity searches and by practical methods for the systematic exploration of 
chemical space(4), a matter that has become important recently with the advent of 
combinatorial chemistry and virtual libraries. 

Techniques which, given a query structure, can find all structures in a database 
which contain it (substructure searching) or which it contains (superstructure 
searching) are essential techniques in chemical information management. Thus, the 
indole unit (5) is a substructure of carbazole (6) but a superstructure of pyrrole (7). 
Both 6 and 7 are "similar" to 5, but in different ways. Any biological activity 
possessed by 5 is expected to be present also in 6 and so this leads the medicinal 

Ch CVD o 
N N N 
H H H 

5 6 7 

chemist from a single known active compound to many more compounds with 
probable activity. Superstructures are important because they begin to define the 
chemical space in question. If all structures in a database were arranged by 
chemical "similarity" then 6 and 7 (and 5) would fall near one another and this also 
carries implications that are important. If 5 resides in a sparely populated chemical 
environment then this environment (i. e any structures related to 5 or 7) are probably 
worth examining and on the other hand, if the environment is densely populated 
such research may not be so worthwhile because useful new information is unlikely 
to result and the possibility that this area has been studied (and patented) by others 
is considerable. 

All of this deals with the type and number of compounds that are chemically 
similar to the structure of interest. If these are to be likened to neighboring 
communities then the question arises as to the nature and outer limits of the space, 
i.e. the national or planetary boundaries. This is a far more difficult question which 
is taken up under Isomer Enumeration, below. 
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c. Approximations in Chemical Graph Theory 

As mentioned above, reduction of chemical structures to their most basic level 
of fully saturated, acyclic hydrocarbons facilitated the application of graph theory 
to chemistry. The neglect of cyclic structures in early graph theory work simply 
meant that a very large segment of organic chemistry, actually about 92% by CAS 
estimates, was beyond the reach of graph theory. The difficulties of dealing with 
cyclic structures have since been completely resolved. The second approximation, 
to ignore heteroatoms, left the graph theory camp open to a major criticism because 
most chemical behavior results from the presence in a molecule of "heteroatoms", 
primarily oxygen or nitrogen. Heteroatoms exert an enormous effect upon the 
distribution in a molecule of electrical charge and it is this that dictates much of the 
chemical behavior of molecules. Chemical graph theory however blithely ignored 
charge distribution and so left itself open to very serious criticism from the 
empirical camp, which knew well how important this is. This difficulty has been 
addressed in recent years by workers such as Hall and Kier who have developed 
a valence-connectivity index (5) and an "electrotopological" state (6),(7) which 
seek to account for atomic charges as well as atomic environment. These methods 
has since been used with success in a number of applications (S),(9),(70) and have 
become standard procedures. 

It might be noted here that while Hall and Kier's handling of charge in organic 
graphs has proved itself in many highly successful applications, it is fairly 
simplistic, particularly in contrast to the very precise calculations of atomic charge 
allowed by the Schrfldinger equation. Here is a gulf, surrounded on both sides by 
armies eager, but so far unable to traverse it. 

d. Isomer Enumeration 

Enumeration of isomers has a curious history. Its practical significance is very 
limited but it poses irresistible intellectual challenges and for at least 250 years 
scientists have attempted to discover methods for the determination of the number 
of possible isomers corresponding to a given molecular formula. 

The early methods were quite empirical and addressed specific questions such 
as the numbers of isomeric alkanes and so on. Attempts to generalize the problem 
began with Cayley in 1874 (77) and were developed further by Henze and Blair 
(72) and by Pdlya (13). With the availability of computers a renewed effort to 
systematize these problems was undertaken; in 1981, Knop and coworkers (14) 
published an algorithm which correctly enumerates the number of isomeric acyclic 
alkanes for a given carbon number. 

It is of interest here not to pursue the details of isomer enumeration but to 
contemplate some of the results, which have a bearing on the concept of chemical 
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space, referred to above. When considering a specific chemical structure, primary 
questions concern the number of structures which contain it as a substructure and 
the population of compounds which are themselves substructures of the species in 
question. Looming over these however is the larger question as to how many 
structures exist in chemical space in general. Isomer enumeration provides some 
partial answers to this. If one limits the elements in organic compounds to the 
"organic elements" C, H, N , O, S, F, CI, Br and I, then in principle, it is 
straightforward to generate all possible molecular formulas and then to calculate 
the number of possible structures corresponding to each molecular formula. The 
total number of structures generated in this way defines the chemical space 
occupied by compounds composed of these elements. 

Such calculations have never been completed, but from the work that has been 
done, it is quite clear that very large numbers are involved. A figure of 1020 - 1024 

has been proposed by Ertl (15). This is only an estimate (note the range of 5 orders 
of magnitude) but the current size of the CAS Registry, which is 2 x 107 

compounds, gives one the sense that 1024 is not totally unreasonable. Isomer 
enumeration calculations have shown18 for example, that there are 
1,117,743,651,746,953,270 (Le. about 1018) different isomers of C 5 O H I 0 2 and 40 
times as many isomers of C 5 0 H 1 0 2 O. These numbers cannot include any cyclic or 
unsaturated compounds, nor of course any compounds containing elements other 
than C, H and O. The number 1018 is only 10"6% of total chemical space; whether 
or not this is plausible is arguable but it seems fair to say that with only 2 x 107 

compounds currently recorded in the CAS Registry, there are very many more 
chemicals waiting to be prepared and characterized. It also is perhaps worth noting 
that combinatorial chemical syntheses, which when particularly adventurous, might 
examine a million structures, are barely scratching the surface of what is possible. 

e. Topological Indices 

Once a chemical structure has been converted to an equivalent matrix, it is 
possible to manipulate this matrix in a variety of ways to generate a single number 
which describes the molecule more or less completely. These molecular descriptors 
are usually known as a topological indices and have been shown to possess a 
number of useful applications. If the calculated index is non-degenerate, associated 
with only one structure, it becomes a useful identifier and because of this, the 
uniqueness of topological indices is an important characteristic. Some indexes, 
such as Balaban's J indices, are highly non-degenerate but the belief is that 
absolute non-degeneracy can never be achieved and that as molecular properties 
coincide then so will topological indices. A more important practical application 
stems from the observation that topological indices reflect molecular shape in some 
way and often track and can be regressed to physical properties such as boiling 
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point which themselves are related to molecular shape. Once a successful 
regression is in hand, the regression equation can be used to predict the properties 
of new structures. 

One of the earliest and simplest topological indices is the Wiener Index (76) 
which is defined as the sum of the number of bonds between any pair of carbon 
atoms. Thus for isopentane: 

C-| C2 C3 C4 

c5 

the following table can be constructed: 

Atom pair Number of bonds 

1,2 1 

1,3 2 

1,4 3 

1,5 2 

2,3 1 

2,4 2 

2,5 1 

3,4 1 

3,5 2 

4,5 3 

and the number of bonds in the structure, the sum of the right-hand column in the 
table is thus 18. This is the Wiener Index (w) for isopentane. An easier way of 
performing this calculation is to consider each C-C bond in turn and multiply the 
number of carbons on one side of the bond by the number on the other. For 
isopentane, one gets: 
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4*1+2*3 + 1*4+1*4=18 

In the same way, the number of pairs of carbons (p) separated by 3 bonds can 
be determined. In this case there are only 2 such pairs (C,-C 4 and C 4-C 5) and so for 
isobutane, w = 18 and p = 2. Wiener showed that the variable w and p can, by least 
squares regression, be related to the boiling point of the compound by the 
relationship: 

This finding, that a physical property can be predicted from the structure of the 
compound, precipitated a flood of research projects aimed at broadening and 
exploiting it. 

The Hosoya Index(/7) attempted to characterize the overall topology of a 
molecule by summing the numbers of structural patterns with one, two, three... 
disjoint bonds. As an example, 2,3-dimethylhexane has 7 single disjoint bonds, 13 

double disjoint bonds and 6 triple disjoint bonds, and no quadruple or higher 

bp = aw + bp + c 

1 disjoint bond, = 7 

2 disjoint bonds, Z 2 = 13 

3 disjoint bonds, Z 3 = 6 
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disjoint bonds, giving a Hosoya Index of 1 + 7 + 13 + 6 = 27. The Hosoya 
Index and Indices derived from it regress very well to the boiling point data for 
acyclic hydrocarbons, giving the equation: 

BP = 1.2211Z + 81.6939 

which predicts boiling points with a standard error of 2.90°, comparable to 
experimental error. 

Randic (18) has developed a "Connectivity index" which seeks to properly 
evaluate the effect on a structure of branching. Each bond in a structure makes a 
contribution of 1//m.n to the connectivity index (ly) where m and n are the number 
of carbons attached directly to the carbons involved in the bond. Thus for the 1-2 
bond in 2,3-dimethylhexane, atom 1 has 1 neighboring carbon and atom 2 has 3, 
thus m = 1 and n = 2. Likewise for the 2,3 bond m = 3 and n = 3 and so on. For the 
whole molecule; 

!X = 1/2 + 3//3 + 1/3 + 1//6 + 1//2 = 3.6807 

The connectivity index can be calculated for all acyclic hydrocarbons; some 
selected values for the isomeric dimethylhexanes are given in the table below. 

Compound ix 
2,2-Dimethylhexane 3.5607 

3,3-Dimethylhexane 3.6213 

2,5-Dimethylhexane 3.6259 

2,4-Dimethylhexane 3.6639 

2,3-Dimethylhexane 3.6807 

The connectivity index and its derivative, the "ID Number index" both give 
special weight to the peripheral bonds 1-2, 2-7 etc. and less weight to the 
"buried"bonds 2-3,3-4, and 4-5. Thus the contributions of different bonds to the 
overall molecular surface are expressed in this index. 

At least 200 different topological indices has been proposed during the last 
decade and in fact in the view of many, they have begun to clutter the literature. 
These topological indices have been used a great deal in QS AR and QSPR studies. 
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For any such index, its non-degeneracy and the quality of the regressions it 
supports are important properties and these have both been examined in some detail 
by Randic (79). 

Just as different snapshots of a person can emphasize or de-emphasize 
different features, so different topological indices can accentuate different 
structural features such as branching. Thus the Wiener index w may be thought of 
as an expression of the mean molecular volume and its cube root V w , the 
diameter(20). Likewise, the connectivity index22 reflects branching in a structure. 

Finally, topological indices can be regarded as a measure of similarity and this 
has been used in some algorithms that attempt to calculate structural similarity. 

f. Reverse Processing 

Topological indices have one important drawback; they are calculated in a 
process that is not reversible. Thus to derive any particular topological index from 
a structure is routine but the reverse process has never been accomplished and so, 
though a valid analysis may provide an equation relating a physical property to a 
topological index, there is no general method to use the topological index to derive 
a corresponding structure. In an effort to address this problem, Zefirov et al. 
developed(27) a regression equation relating the Hall and Kier "Kappa 
Indices(22)" K, (size), K 2 (shape) and K 3 (centrality) to the heat of evaporation: 

AH e = 3.971K, + 1.285K2 - 0.253K3 + 2.683 

This equation was them solved to find all the C 6 alkanes with a heat of 
evaporation between 28 and 30 kJ/mol. The three compounds in the table below 
were identified. 

Compound AHe(kJ/mol) 

2-Methylpentane 29.86 

3-Methylpentane 30.27 

2,3-Dimethylbutane 29.12 
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g. Genetic Algorithms 

Beginning in the early 1990s, several hundred papers appeared on genetic 
algorithms and this has now been established as a method for the prediction of the 
properties of chemicals. An application of a genetic algorithm in polymer design 
was reported by Venkatasubramanian et al.(2i) in which the goal was to design a 
polymeric structure with specific physical properties. This method depends upon 
the ability of an algorithm to generate a family of structures in a manner which is 
powered by genetic selection and guided by the required physical property. It is 
summarized in the flowchart below. 

A seed population of typical polymer structures is used as a starting point. The 

Seed 
Population 

Design Calculate New 
Criteria Fitness Generation 

I 
Elitist 
Policy 

N Apply 
Operator 

f t 
Select Select 

Operator Parents 

"fitness" of each structure (the inverse of the similarity of the estimated property 
and the desired property, a normalized number which should approach 1) is 
calculated with reference to the design criteria then, with a genetic operator in 
place, two "parents" are selected and an offspring structure is produced by 
crossover or mutation. If the fitness of the offspring is improved over that of the 
parents the offspring is selected and processed further. External "elitist factors" 
such as stability and environmental acceptability can be incorporated into the 
decision making process. In the case reported, polymers were designed with 
properties (density, glass transition temperature, coefficient 
of thermal expansion, specific heat and bulk modulus) that fell within 0.6% of the 
desired values. 

This algorithm allows the design of structures with a specific property and is 
of major economic importance. Algorithms of this sort are now in use in a variety 
of industries. 
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h. Statistics 

A great deal of chemistry is susceptible to statistical analysis but in spite of 
this, statistics is not typically included in the college chemistry curriculum. One 
outcome of this is that there are many qualified chemists attempting statistical 
analysis of chemical problems and in the process, committing grievous errors. This, 
as has been pointed out(24), is a "dangerous but entirely curable affliction". 

Statistical mechanics - the probability of different phenomena in an assembly 
of a large number of molecules and uses - is a well-established discipline and will 
not be considered in detail here. An exercise of statistics that is more relevant in 
this context concerns the analysis of a particular property, such as toxicity, over a 
large number of different structures. This type of analysis is known as a 
Quantitative Structure Activity Relationship (QSAR) or a Quantitative Structure 
Property Relationship (QSPR) study and there are thousands of examples of these 
in the literature. During the 1970s, a considerable amount of work was done in the 
pharmaceutical industry to relate properties such as the octanol/water partition 
coefficients of different molecules to their biological activities. These enjoyed 
some success but because properties such as solubility were themselves 
unpredictable, the practical value of these studies was limited. Many of the 
properties used in such studies are in effect, surrogates for the structure of the 
compound, and the relationship that is most useful is the direct one, between 
structure and property. 

A topological index (TI) is an alternative expression of the structure and if it 
can be shown that the TI is statistically related to a property such a specific 
bioactivity, then such a relationship will be valuable because it will limit the 
amount of biological testing necessary to discover a lead drug. In principle, it 
should also allow the identification of the optimum structure for a given property, 
but here there is a barrier in the form of the "reverse problem", discussed above. 
One may well discover the optimum value of a TI but finding the structure that 
corresponds to this TI is difficult. 

In work carried out in the 1980s, relationships relating vapor pressure to 
experimentally determined properties such as boiling point, critical pressure and 
so on had been reported but in 1998, Liang and Gallagher showed(25) that vapor 
pressure p L could be calculated as a function of the polarizability of the molecule 
a and the counts in the structure of hydroxyl, carbonyl, amino, carboxylic, nitro and 
nitrile groups: 

log p L = -0.432a - 1.382(OH) - 0.482(C=O) - 0.416(NH) 
- 2.197(COOH) - 1.383(N02) - 1.101ON + 4.610 

In 2002, Quigley and Naughton(26) showed that the effectivenenss of P~ 
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blocking agents, expressed as the angor treatment dose (ATD) is related to the 
connectivity index l% and the eccentricity index £ A ( 2 7 ) by the equation: 

ATD = (193.70 ± 63.74) l% - (85.38 ± 58.9) £A - (798.55 ± 702.4) 

a correlation for which R2 = 0.781 and s = 174.7. The acute toxicity, LD 5 0 is given 
by the relation (R2 = 0.781) established by P6rez-Gim6nez et al(2S): 

LD 5 0 = (7.742 ± 1.721) l%y - (2.266 ± 1.605) £A - (49.876 ± 12.21) 

or by the slightly better (R2 = 0.933) relationship derived by the Gdlvez group(29) 

LD 5 0 = (0.158 ± 0.075) lxv - (0.268 ± 0.060) $A - (3.324 ± 0.650) 

Basak's group reported in 2000(J0) that the acute aquatic toxicity of series of 
benzene derivatives could be determined by regression using topostructural indices, 
topochemical indices, geometric parameters and quantum chemical parameters. The 
best correlation obtained used seven parameters: 

path connectivity index, order 0 
number of paths of length 9 

IC information content of the distance matrix partitioned by the frequency of 
occurrence of distance h 

V valence path connectivity index, order 5 
3Dw„ 3D Wiener Number for hydrogen-filled geometric distance matrix 
Ahf heat of formation 
/* dipole moment 

and predicted the LC 5 0 of the compound with R2 = 0.861 and s = 0.30. 

As can be seen from this brief survey of some examples it is important, as a 
practical matter, that estimation of properties be accomplished without reference 
to measured quantities such as boiling point. The work of the p-blockers meets this 
requirement but Basak's aquatic toxicity work, which uses heat of formation and 
dipole moment, does not. It is also clear that the use of topological indices greatly 
assists the search for correlations between theoretical parameters and actual 
properties of molecules and this work should, and surely will continue. 
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i. DNA Computing 

The use of DNA as a computing device was touched on earlier, and is an 
important innovation, which deserves a fuller treatment. The natural role of DNA 
requires, amongst other things, a computational ability and it is thought that DNA 
sequences might be usable in the encoding of information for mathematical 
systems. 

In the work of Adelman1 which is regarded as seminal, a solution to a seven 
city variation of the "traveling salesman" problem was developed using DNA as 
the computer. 

The traveling salesman problem, also known as theHamiltonian path problem, 
is a classical problem in graph theory. It is to find the shortest path which visits 
each of n cities just once each as shown in the diagram below, in which n = 7. 

A. London 

This is an "NP" (non-deterministic polynomial time) problem and, once n > 20 it 
can only be solved by massively parallel computers because it is combinatorially 
explosive. An NP problem such as this must generate random paths through this 
graph, keep only those that begin in London and end in Rome, and keep only those 
that visit all seven cities once each. This can be solved with a DNA computer as 
follows (31): 

For each of the cities A - G, a random sequence 20-mer oligonucleotide is 
made. The complementary strands A ' - G ' are also made. For every path A - B, 
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B - C , and so on, a 20-mer is made consisting of the 3' 10-mer of the originating 
city and the 5' 10-mer of the destination. Using A and G' as primers, this mixture 
is subjected to ligation and PCR amplification which will create many multi-city 

The Traveling Salesman Problem 

starting at A and ending at G. The mixture obtained is passed through an agarose 
gel and all but the 140 bp band (paths through 7 cities) are discarded. These 7-city 
paths are then checked to ensure that they all go through each of the original cities. 
The resulting oligomers: 

a. Cover 7 cities 
b. Begin at London (A) and end at Rome (G) 
c. Include every city and therefore include no city more than once 

These are thus the possible solutions to the Traveling Salesman problem. Analysis 
of the mixture and sequencing of the products gives the full result. Calculation of 
the total distance associated with each path is simply arithmetic. 

It is important to note that this is an NP problem, which cannot in general be 
solved by sequentially operating computers. Massively parallel computers can 
handle such problems and a DNA computer is a massively parallel machine. It 
handles each calculation relatively slowly but can manage millions of parallel 
problems simultaneously. 
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Afterword 

This paper has attempted to examine the impact of mathematics upon 
chemistry. The question is: Has mathematics exerted a fundamental force in 
chemistry or has it served merely as a tool? 

The answer is, with one major exception, mathematics has served only as a 
tool in chemistry. The major exception of course is graph theory. Graph theory has 
provided and new, sometimes superior way in which chemical structure can be 
viewed. The results from chemical graph theory are very important; an ability to 
reliably and accurately predict the properties of chemical structures could 
revolutionize virtually the entire chemical industry. The impact in the 
petrochemical industry is already clear and such methods, once available, will 
certainly be adopted in other areas, such as the detergent, agrochemical and 
pharmaceutical industries, whose major expenses are related to synthesis and 
testing of chemical compounds. 

Elsewhere in chemistry, as has been seen, mathematics is used heavily and 
frequently permits the solution of otherwise intractable chemical problems. 
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Chapter 6 

On the Magnitudes of Coefficient Values 
in the Calculation of Chemical Similarity 

and Dissimilarity 

John D. Holliday, Naomie Salim, and Peter Willett 

Department of Information Studies and Krebs Institute of Biomolecular 
Research, University of Sheffield, Western Bank, 

Sheffield S10 2TN, United Kingdom 

Analysis of the distributions of inter-molecular similarity 
values has been carried out using the Tanimoto coefficient, the 
Cosine coefficient and the complement of Euclidean distance. 
In order to determine if they are an effective measure for 
dissimilarity-based methods, their characteristics at low values 
have been compared with distributions derived using bit-
strings generated by random techniques. The effectiveness of 
similarity measures for property prediction across the full 
range of ranked search output was then examined. The results 
show that the distributions of inter-molecular similarity 
measures are not random in nature, but their effectiveness for 
property prediction is better than random only when very small 
or very large similarity values are considered. 

© 2005 American Chemical Society 77 
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Keywords: Bit-string, Cosine coefficient, Euclidean distance, 
Fingerprint, Neighbourhood principle, Similar property 
principle, Similarity measure, Tanimoto coefficient 

INTRODUCTION 

The measurement of structural similarity plays an important role in many 
aspects of chemoinformatics, such as database searching (7), the design of 
combinatorial libraries (2) and the prediction of biological activity (5). While 
many different similarity measures have been reported in the literature (4-6), 
most applications use a particularly simple approach based on the number of 2D 
fragment substructures common to a pair of molecules. Such measures were first 
reported by Adamson and Bush (7) but became more widely adopted following 
studies of database searching at Lederle (8) and at Pfizer (9) in the mid-Eighties. 
Current approaches to 2D similarity searching typically use bit-string or 
fingerprint representations of molecules with the similarity being calculated by 
the Tanimoto Coefficient (7), and systems using this are included in much 
software for chemical information management. 

Given two molecules A and Β represented by bit-strings containing a and b 
non-zero bits, c of which are in common, then the Tanimoto coefficient is 
defined to be 

Tan = 
a + b-c 

The reader should note that the Tanimoto Coefficient can also be used with 
non-binary molecular representations, such as a set of calculated 
physicochemical properties, but we restrict ourselves here to binary 
representations. The Tanimoto coefficient, which is also known as the Jaccard 
Coefficient, has values in the range zero to unity, these corresponding to bit-
strings having no bits at all in common or having all bits in common, 
respectively. The complement of the Tanimoto coefficient - also known as the 
Soergel coefficient - can be used as a dissimilarity coefficient in molecular 
diversity studies. 
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Although widely used for similarity searching and diversity selection, the 
binary form of the Tanimoto Coefficient has occasioned much recent criticism 
(10-14). Godden et al. (12), for example, showed that this coefficient has an 
inherent bias to certain specific similarity values, with the highest peak in the 
distribution of possible similarity values occurring at around 0.3 to 0.4. Since 
this range of statistically-preferred Tanimoto values is not outside the range of 
values that might be encountered in diversity-based selection studies (2, 15), it is 
possible that dissimilarity-based compound selection (DBCS), for example, 
could be influenced by such chance occurrences. 

Flower (//) supports Lajiness's comment (10) that the distribution of 
Tanimoto coefficients tends to shift towards larger values when comparing more 
complex query compounds. This is due to the fact that, in a similarity search 
using fragment bit-strings or fingerprints, a large molecule in the database is a 
priori much more likely to have bits in common with the target structure than a 
small molecule. Thus, if an association coefficient like Tanimoto coefficient is 
used in DBCS, small molecules tend to be selected because they are likely to 
have few bits set in a fingerprint; similar studies have been carried out by Dixon 
and Koehler (75) who have also shown that the Euclidean distance, in contrast, 
puts greater emphasis on large compounds when selecting a subset of diverse 
structures. Studies such as these have led to the suggestion that the Tanimoto 
Coefficient should be modified (14, 16) or used in combination with other 
coefficients (13, 17). In this paper, we consider the use of the Tanimoto 
coefficient for the calculation of molecular similarity and dissimilarity using 
fragment bit-strings, comparing the results obtained with those from two other 
common similarity coefficients, the Cosine coefficient and the Euclidean 
distance (7). 

LOW-VALUED TANIMOTO COEFFICIENTS 

Applications of similarity measures normally focus on high-valued 
coefficients. For example, the Jarvis-Patrick clustering method requires the 
initial identification of the nearest neighbours, i.e., the most similar molecules, 
for each molecule in a database as precursor to the actual clustering phase. 
Again, in similarity searching or property prediction, one may require all 
molecules having a value for the similarity coefficient with the target structure in 
the search that is greater than some threshold value, e.g., the use of 0.7 - 0.8 as a 
Tanimoto cut-off in property prediction (3). Conversely, DBCS methods (10, 
18, 19) involve selecting a (near-) maximally diverse subset of a file of 
molecules by focusing on the furthest neighbours, i.e., those molecules that have 
the smallest coefficient values, or those that have a coefficient value less than 
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some threshold. Algorithms of this sort are readily implemented using 
coefficients like the Tanimoto coefficient, but one can reasonably query the 
appropriateness of such procedures. The problem is illustrated in Figure 1 which 
shows the target structure for a similarity search of the NCI AIDS database (20) 
using UNITY 2D fragment bit-strings (21) together with some of the molecules 
retrieved in the first decile of the sorted ranking. Visual inspection of Figure 
1(b) suggests that there is a clear (topological) resemblance between these 
molecules and the target structure; moreover, the similarity of the first molecule 
does appear (to the authors of this paper at least) to be greater than the similarity 
of the second molecule, in accordance with the ordering suggested by the 
calculated values of the Tanimoto coefficient. Now consider the structures 
shown in Figure 1(c), which come from the tenth decile of the sorted ranking. 
There does not seem to be any obvious resemblance between these molecules 
and the target structure, and it is not at all clear (again to these authors) that the 
first molecule is more dissimilar from the target structure than is the second, 
whereas the Tanimoto coefficient would order the two molecules in the order 
shown. 

Examples such as those shown in Figure 1 suggest that while the Tanimoto 
coefficient is an appropriate tool for ranking a set of molecules and 
discriminating between them when large coefficient values are involved, the 
coefficient appears to be unable to discriminate appropriately when low 
coefficient values are involved. Yet it is precisely the latter class of values that 
are the focus of DBCS algorithms. 

DISTRIBUTION OF SIMILARITY VALUES 

Generation of fragment bit-strings 

The discussion in the previous section suggests that it may be appropriate to 
consider the extent to which Tanimoto values do, in fact, encode meaningful 
information about the structural relationships between molecules. If we wish to 
address this question then we must have some external basis of comparison as 
similarity is, after all, an inherently subjective concept. The approach taken here 
is to compare the similarity values obtained from sets of real fragment bit-strings 
with the values obtained from sets of random fragment bit-strings. This 
approach is analogous to the sequence randomization procedures that are 
routinely employed to validate the significance of the homology scores obtained 
in searches of databases of proteins and of nucleic acids; the use of randomised 
structural representations in the calculation of chemical similarities was first 
suggested by Bradshaw (22) and by Sheridan and Miller (25). 
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(a) Target structure. 

similarity = 0.033 similarity = 0.040 

(c) Sample structures from the tenth decile of sorted ranking. 

Figure I. Examples of results from a similarity search against a target using 2D 
bit string based Tanimoto coefficient. Compounds are from the AIDS database, 

characterised using UNITY 2D bit strings. 
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The use of a randomization approach requires some way of generating 
random bit-strings, so that their behaviour in similarity analyses can be 
compared with the behaviour of real bit-strings. Here, we have used four 
different approaches. The first is simply to generate a bit-string containing m 
non-zero bits by generating m random integers in the range 1-n, where n is the 
total number of bits in the bit-string. While certainly random, such a bit-string is 
unlikely to be anything like a real one and we have hence tested three other bit-
string generation methods that seek to model real bit-strings more closely. The 
second approach involved an analysis of the frequencies with which bits were set 
in the real bit-strings describing a dataset. Then, during the generation process, 
bits were set with probabilities based on their frequencies of occurrence in these 
real bit-strings. It is known that there are strong correlations between the 
frequencies with which fragments occur in sets of molecules (24, 25), and the 
third set of random bit-strings were hence generated so as to reflect the inter-bit 
co-occurrences in the real bit-strings. The fourth set of random bit-strings was 
generated taking account of both the frequencies and the co-occurrence 
frequencies in the real bit-strings. 

Two real datasets were used: the first was a set of 5772 molecules from the 
NCI AIDS file mentioned previously; and the second was a set of 11607 
molecules from the ID Alert database (26). Both of these sets of molecules were 
characterised by three types of real bit-string. The Barnard Chemical Information 
(BCI) (27) bit-string is a 1052-bit structural key-based bit-string derived from 
BCI's standard 1052 fragment dictionary and encoding augmented atoms, atom 
sequences, atom pairs, ring component descriptors and ring fusion descriptors. 
The Daylight bit-string (28) is a 2048-bit hashed fingerprint that encodes each 
atom type, augmented atoms, and sequences of length 2-7 atoms. The UNITY 
bit-string (21) is a 992-bit fingerprint which encodes sequences of length 2-6 
atoms as well as structural keys for common atom and bond types; the bit-string 
is part-hashed in that it hashes information from different path lengths separately. 

Analysis of similarities 

Inter-molecular similarities were calculated using three different coefficients 
for all five bit-strings (the real bit-string and the four random bit-strings) for each 
of the two databases using each of the three bit-string representations. The three 
coefficients used were the Tanimoto coefficient, the Cosine coefficient, and the 
complement of the Euclidean Distance after normalization by #?, the number of 
bits in the bit-string. 
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Inspection of the frequency distributions demonstrates clearly that the real 
bit-strings give distributions that are different from the random bit-strings, with 
the former distributions consistently containing notably larger numbers of very 
high and very low similarity coefficient values than do the latter distributions. 
For example, Figure 2 shows the frequency distributions of Tanimoto similarity 
values for all the molecules containing 60-79 bits, 130-149 bits, and 160-179 
bits respectively in their real bit-strings, together with the random results 
obtained by averaging over ten different random bit-strings in each case. The 
figure shows the distributions obtained with the BCI bit-strings for the AIDS 
dataset, but entirely comparable plots are observed with the Unity and Daylight 
bit-strings, and with the ID Alert dataset, and also for the Cosine and Euclidean 
Distance coefficients. Use of x2 and Kolmogorov-Smirnov tests show that all 
these are significantly different at the 0.05 level of statistical significance. 

These experiments hence demonstrate that the real bit-strings give 
distributions that are significantly different from those that are obtained from bit-
strings generated by random means; moreover, this finding applies throughout 
the full range of similarity values and using all of the types of bit-string and 
similarity coefficient that were tested. It hence seems possible to reject the 
possibility that low-valued similarity coefficients contain no more meaningful 
structural information than do coefficients generated by random processes. 

Analysis of coefficients 

The experiments above do provide some support for the continuing use of 
bit-string coefficients for selecting sets of compounds. However, as noted 
previously, earlier studies have highlighted several characteristics of similarity 
coefficients that affect their use in molecular diversity analyses such as DBCS 
(10, 11, 13). These characteristics apply not just to real bit-strings but also to 
the simulated ones studied here, and are highlighted by our use of three different 
coefficients, as is exemplified by inspection of Figure 3. Here, the Tanimoto 
distribution is towards the left-hand end of the similarity axis when compared to 
the Cosine distribution which covers by far the widest range of similarity values; 
and the distribution for the complement of the Euclidean distance is strongly 
peaked and covers only a small range of similarity values. Another characteristic 
of these three coefficients is the effect of variations in the numbers of bits set on 
the similarity values that are calculated. Specifically, the Tanimoto and Cosine 
values tend to increase as more bits are set in the bit-strings that are being 
compared, while the Euclidean complement values tend to decline as more bits 
are set. It is quite easy to rationalize this behaviour. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
6

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



84 

700000 1 

600000 f r - * 

500000 l+fi 
| 400000 f \ Vff% 

Q 300000 \—? k \ 

200000 

100000 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Similarity value 

(a) Bit strings with 60-79 bits set. 
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(b) Bit strings with 130-149 bits set. 
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(c) Bit strings with 160-179 bits set. 
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Figure 2. Comparison of Tanimoto frequency distributions of intermodular 
similarity values from the AIDS dataset characterised by the BCI bit strings with 

four randomly generated bit strings. 
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(b) The Euclidean measure. 
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(c) The Cosine measure. 
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— • • - • Purely random 
— - A • • Random with bit frequency taken into account 
— "X— Random with bit correlation taken into account 
— -Q — Random with bit frequency and correlation taken into account 

Figure 3. Comparison of Tanimoto, Euclidean and Cosine frequency 
distributions of intermodular similarity values. 
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The Euclidean complement coefficient used in our experiments can be 
defined as 

where a, b and c have been defined in the Introduction to the paper and where N 
is the total number of bits in a bit-string. If we assume that a > b then the 
minimum value of the numerator in the square-root expression is a-b, 
(corresponding to c=min{a,b}) while the maximum value is a+b (corresponding 
to c=0). The range of values for Euc hence lies in the range 

It can be seen that if the value of a and b increases, then the left-hand 
expression decreases, which suggests that the starting point of the Euc values 
will decrease when the number of bits set becomes larger. Consider a dataset 
where a number of compounds have only a few bits set: then, if any compounds 
with a small number of bits set have already been selected in a DBCS procedure, 
it is unlikely that other compounds also having a small number of bits sets will 
be selected. 

The Tanimoto coefficient behaves very differently, with the coefficient 
values generally increasing in line with an increase in the number of bits set in 
the molecules that are being compared. For the Tanimoto coefficient, Tan, the 
range of values is 

the minimum and maximum values corresponding to c=0 and c=min{0,6}, 
respectively. Thus, in a similarity comparison, if one of the molecules is small, 
the upper bound of the Tanimoto, is small; large Tanimoto values are more 
likely to be produced if both bit-strings are densely populated (indicating large 
molecules). In the case of DBCS, therefore, smaller molecules have a greater 
possibility of being selected than do larger molecules. The Cosine coefficient 
exhibits the same behavior as the Tanimoto coefficient (see also (29)). The 
expression used for calculating the Cosine similarities, Cos, is 

0<Tan< m\n{a,b], 
max {a,b} 
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and by analogous arguments to those above, the range of values is 

0<Cos< /min{*'*} ' 
y max{tf,£} 

with larger molecules again tending to yield larger coefficient values. The 
upperbound values for Tan and Cos also suggest that the distribution of Cosine 
values will be broader than those for the Tanimoto coefficient. Now, 

min{o,6} ^ ; 

max {a, 6} 

accordingly 

max{ Cos} > max( Tan) 

with a consequent greater spread in the Cos values than in the Tan values as they 
both have the same lowerbound of zero. This is exactly what is observed in 
Figure 3. 

APPLICABILITY OF THE SIMILAR PROPERTY 
PRINCIPLE 

Thus far, we have considered the structural similarities between pairs of 
molecules, without considering any associated similarities in activity. Extensive 
experiments with fragment bit-strings have demonstrated that they support the 
similar property principle (J-5), but such experiments tend to focus on near 
neighbours; here, we look at the extent to which the similar property principle 
applies when the full range of similar values is considered. Specifically, 
consider a virtual screening environment where a known bioactive molecule is 
used as the target structure for a similarity search of a corporate database to 
prioritise molecules for biological testing. Then, we seek to determine the extent 
to which the principle applies as less and less similar molecules are included in 
the set of nearest neighbours for the target structure. If the similar property 
principle holds then the fraction of the database with the same activity as the 
target structure should decline steadily as the threshold similarity for inclusion in 
the nearest-neighbour is reduced. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
6

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



88 

Our experiments used the same two datasets and the same three fragment 
bit-string types as previously. For the AIDS dataset, which contains 247, active 
compounds, 802 moderately-active compounds and 4723 inactive compounds, 
the moderately-active compounds were classed first as inactive, and then as 
active, in a two-part study. For the ID Alert database, we selected ten bioactive 
types, for which the number of actives in each type ranged from 46 to 115, and 
used these as our active sets. In both cases we used each active molecule in turn 
as the target structure with the Tanimoto, Cosine, and Euclidean complement 
coefficients being used to rank the database in order of decreasing similarity with 
the target structure in each case. The percentage of the actives in each 0.05 
percentile of the rankings was then noted. 

The resulting plots (averaged over all of the target structures in each case 
and using UNITY 2D characterisations) are shown in Figure 4 for the AIDS 
database and Figure 5 for the ID Alert database. As expected, there is high 
percentage of actives in the 95-th percentile at the top of the rankings, but this is 
followed by a very rapid fall to the 90-th percentile in all the plots; there is then a 
much less marked variation in the percentage of actives (sometimes up and 
sometimes down but never by that much) till a final dip in the cases of the 
Cosine and Tanimoto coefficients. Plots such as these hence suggest that the 
similar property principle does indeed hold at the highest similarities (95-th 
percentile), and that its converse often holds at the lowest similarities (30-th to 
the 10-th percentile, depending on the database and bit-string characterization); 
at these very low similarities, therefore, a molecule that is chosen is indeed likely 
to have different biological characteristics from the target structure, supporting 
the use of such coefficients in DBCS-like applications. However, there is a large 
intermediate range of similarities where ranking by similarity will retrieve only a 
very few more, if any more, actives than would be obtained by random selection 
once the very similar molecules had been removed. 

The Euclidean-complement plots in Figures 4c and 5c are very different as 
they appear, particularly in the case of the AIDS dataset, to be bimodal, with one 
peak at the 95-th percentile and one at around the 5-th to the 15-th percentile. 
This coefficient does not include a size normalization factor in the denominator 
(as do the Tanimoto and Cosine coefficients), and the presence of the a+6-2c 
term thus results in an inherent bias towards larger molecules; specifically, the 
larger the molecules considered, the smaller the value of the Euclidean 
complement. Now both of the datasets have a fair number of active molecules 
that are large (i.e., that have many bits set) and these thus have an inherent a 
priori probability of having a low similarity with a target structure, with the 
resultant peaks in the lowest percentiles that are seen in Figures 4c and 5c. 
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The distributions shown in Figures 4 and 5 are pertinent to the statements 
that are sometimes made about the effectiveness or otherwise of different types 
of structure representation in similarity and diversity analyses. Many previous 
studies have shown that 2D fingerprints are very useful in such applications; 
however the distributions included here demonstrate that these favourable 
characteristics are observed only when certain similarity coefficients are 
employed. It is the combination of structure representation and similarity 
coefficient that together comprise a similarity measure that determines whether a 
successful analysis will be obtained. 

CONCLUSIONS 

Similarity measures based on chemical bit-strings and association or 
distance coefficients are widely used in similarity and diversity studies. In this 
paper, we have considered the magnitudes of the coefficient values that are 
obtained using three common similarity coefficients and three common bit-string 
representations. High coefficient values are known to encode meaningful 
relationships between different molecules and between structure and activity. 
Our results suggest that low coefficient values also encode significant 
relationships, although the utility of this relationship depends on the coefficient 
and on the size of the molecules that are used. 
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Figure 4. Average % of actives covered in percentiles of similarity ranking in 
the AIDS database (UNITY 2D bit strings). 
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Figure 4. Continued. 
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Figure 5. Average % of actives covered in percentiles of similarity ranking in 
the ID Alert database (UNITY 2D bit strings). 
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Figure 5. Continued 
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Chapter 7 

Cheminformatics and Comparative Quantitative 
Structure-Activity Relationship 

Rajni Garg 

Chemistry Department, Clarkson University, Potsdam, NY 13699-5810 

Cheminformatics encompasses the design, organization, 
storage, management, retrieval, analysis, dissemination, 
visualization and use of chemical information. Various tasks 
involved in cheminformatics are data mining, docking, 
defining quantitative structure-activity relationships (QSAR), 
pharmacophore mapping, and structure/substructure 
searching,. There are many approaches to QSAR and several 
programs available in the market. One such program is 
CQSAR that has been used to develop a CQSAR database that 
organizes QSAR from cheminformatics point in the area of 
physical-chemical and biological-chemical interactions. This 
database not only keeps account of what has been happening in 
the QSAR research but also provide numerous possibilities for 
comparing results from all kinds of biological systems (DNA, 
enzymes, receptors, cells, Human) with hydrophobic, 
electronic, and steric properties of the molecules. In this 
chapter the salient features of CQSAR program and database 
are considered in brief to illustrate its application in drug 
discovery, followed by a discussion of important 
physicochemical parameters (molecular descriptors) employed 
in developing QSAR. At the end "comparative QSAR of anti-
HIV protease inhibitors" exemplify the role of 
cheminformatics and CQSAR in drug-design. 

© 2005 American Chemical Society 97 
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Introduction 

Discovery and marketing of a new drug costs a pharmaceutical company up 
to $650-800 million and takes an average of 12 to 15 years. Companies are 
continually exploring new software technologies and information resources to 
accelerate and streamline their drug-discovery activities. According to Brown 
"Cheminformatics is mixing of information resources to transform data into 
information, and information into knowledge, for the intended purpose of 
making better decisions faster in the arena of drug lead identification and 
optimization" )̂. Various tasks involved in cheminformatics are data mining, 
docking, defining quantitative structure-activity relationships (QSAR), 
pharmacophore mapping, structure/substructure searching, and tools and 
approaches for predicting activity and other properties from structure. 

Explosion of data from high throughput screening and combinatorial 
chemistry has put chemical information management and data analysis at the 
forefront of pharmaceutical research. Scientist involved in drug discovery 
process uses cheminformatics to define potential pharmaceutical agents or 
classes of agents, to be developed as potential lead. Synthesis of analogs of the 
lead molecule and their biological testing is an important aspect of drug design 
in order to obtain progressively better analogs. It is required not only for 
improving potency and efficacy but for pharmacokinetics (ADME) and side 
effects. 

The principal hypothesis employed in the design of new analogs is that any 
change in the chemical structure produces a positive or negative change in the 
bioactivity. A systematic study of such cause and effect relation is called 
structure-activity relationship (SAR) study. SAR establishes the desirable 
changes in chemical structure and properties required for producing better 
biological activity. SAR has been made quantitative with the use of the 
physicochemical parameters (most often measured but sometimes calculated). 
The QSAR (quantitative structure-activity relationship) paradigm involves 
different quantitative approach to structure-property correlations in physical 
organic chemistry, biochemistry, and molecular design. It plays a vital role in 
lead exploitation (2,5). 

Crum-Brown and Fraser (4) were the first to link physiological action to 
"chemical constitution". Meyer and Overton correlated biological activity with 
oil-water partition coefficients of narcotic substances (5,d). Albert established 
the importance of ionization and shape in the bacteriostatic action of 
aminoacridines (7). The most widely used and successful approach using 
descriptors is that of linear free energy relationship (LFER) as evidenced in the 
early work of Hammett (8) followed by excellent work of Hansch (2). Selassie et 
al. have described the development of QSAR in their recent work (9). 
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It is difficult to keep track of what is happening in the field of QSAR 
research. A search on QSAR results in more than 28,000 web sites. It is not 
possible to review all these pages and collect useful information. There are many 
approaches to QSAR, and several QSAR and SAR program available in the 
market. One such program is CQSAR (10), which has been used to generate a 
database of QSAR (CQSAR database) since its advent at Pomona College by 
Corwin Hansch and his group (//). CQSAR database organizes QSAR derived 
for the data obtained from the literature for physico-chemical (Phys-database) 
and bio-chemical (Bio-database) interactions. It is very important with respect to 
cheminformatics as it not only keeps account of what has been happening in the 
QSAR research but also facilitates the comparison of results from all kinds of 
biological systems (DNA, enzymes, cells, receptor, Human) with hydrophobic, 
electronic, and steric properties of the molecules. 

Advances in understanding QSAR derived on biological system can be best 
understood by comparative studies (12-16). Comparative studies of a newly 
derived QSAR with other similar biological QSAR and the QSAR from 
mechanistic physical organic chemistry provide lateral support for its validation 
and helps in elucidating the reaction mechanism. In the following sections the 
salient features of the CQSAR program and database are considered in brief that 
illustrate its application in drug discovery, followed by a discussion of important 
physicochemical parameters employed in developing QSAR. At the end 
"comparative QSAR of anti-HIV protease drugs" exemplify the role of 
Cheminformatics and CQSAR in drug-design. 

CQSAR Program and Database 

The CQSAR program is used to develop and search CQSAR database. At 
present it contains over 18,500 equations that relate physico-chemical and bio­
chemical properties of molecules to various molecular descriptors 
(physicochemical parameters). The data used to derive the QSAR are taken from 
various referred journals. Everyday new data are entered in the database. There 
are two databases in C-QSAR database: 

• Bio Database - has more than 9,700 QSAR that correlate biological-
chemical structure-activity relationship of biological systems, 

• Phys Database - has more than 8,800 QSAR that correlate physical-
chemical structure-activity relationship of physical organic systems. 

Users can search the data in 20 different fields, e.g., by structure or substructure 
of the compounds studied, by the type of property correlated, by molecular 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
7

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



100 

properties, or by properties of the QSAR equation. The database is often used 
for data mining, to search for lead molecules, for substituent selection and 
"model mining" for lateral validation. The regression mode is used when the user 
wants to derive a new QSAR using new structures and activity data. For detail 
discussion on its use and applications, readers can refer to excellent articles by 
Hansch (17) and Kurup (18). A summary is given here. 

Structure of database 

• Summary - It is given with each dataset and provides information 
immediately about the data e.g., the type of parent molecule for which the 
specific activity (action) is studied, the reference, the number of compounds 
in the data set, the number of parameters used for regression analysis, 
number of compounds actually used in the QSAR etc. The output data 
describe the regression equation. 

• Classes and subclasses in Bio and Phys database - The data is organized in 
such a way that one can request all the information pertaining to a particular 
problem for either a biological system or physical system. The biological 
data are categorized in 6 major classes and these are further divided into 
subclasses. 

• Physicochemical Parameters (molecular descriptors) - The various 
molecular descriptors can be auto-loaded in the system for deriving QSAR 
(10). Broadly these parameters can be divided into three categories: 
hydrophobic, electronic and steric effects, which elucidate three important 
features of a chemical entity. 

Searching the CQSAR database 

Searching for the information that would aid drug design and development 
of new QSAR models that best Explains' the preliminary activity data and 
provide lead for the synthesis of more active analogs are two most useful 
application of the database. QSAR from physical organic provides useful insight 
in understanding complex QSAR developed for biological system. Combined 
database search is useful feature of CQSAR in this direction. Three important 
mode of search are: 

• String search - it is based on carefully selected words, accompanied by 
quote and blanks to narrow the search, e.g., a search on " BIOCHEM.J. " 
finds all the data from Journal of Biochemistry that is stored in the database. 
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• Chemical structure/molecule search - uses SMILES notation, developed for 
representing a chemical structure in 2D by Weininger (2,79,20). 

• Numeric search on the values of parameters - compares various QSAR and 
aids in the selection of new substituents for the next round of synthesis that 
are expected to have better activity. 

Substituent Selection in Molecular Design 

One of the most significant and important feature of QSAR is to aid in 
substituents selection. A new QSAR guides in the selection of additional 
substituents, to design the next series of congeners, which will maximize the 
information obtained on enhanced performance. Parameter selection gives a list 
of substituents with known parameter values. Auto loading of any of these 
parameter values is unique to CQSAR. 

A wise selection of substituents should involve sufficient variation so that 
there is enough spread in individual parameter values. Often it is noticed that 
sets reported in the literature are not usually designed keeping this factor in the 
mind. The QSAR that results from such data can be confusing or misleading 
(27). 

Search for new lead in drug-design 

• QSAR searches on highly active compounds - CQSAR database can be 
searched for the most active compounds exhibiting a specific activity. Most 
researchers made little attempt to formulate a QSAR using their structure-
activity data. Almost all the bio QSAR in the database were developed by 
the Hansch group from published SAR data, therefore, it is unlikely that the 
most active congeners were discovered. 

• Substructure Search based on MERLIN search - The MERLIN feature of 
the CQSAR database helps in searching for compounds by substructure 
searching (finger printing). Substructure search often finds too many 
examples for consideration. That can be made specific by entering a more 
specific name or SMILE. 

Physicochemical Parameters (Molecular Descriptors) 

There are numerous parameters used for describing hydrophobic, electronic 
and steric effects of a chemical entity. Although the CQSAR program can auto-
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load more than 40 parameters, few are often found significant in delineating the 
important aspects of structure-activity profile of molecules. These parameters 
are: 

• Hydrophobic - Clog P, n, MlogP 
• Electronic - 0, a", a+, ah 0*, F 
• Steric - CMR, Bl, L, B5, E s , MgVol. 

Hydrophobic Parameter (Clog P, it, MlogP) 

Clog P is the calculated partition coefficient in octanol/water and is a 
measure of hydrophobicity of the whole molecule, while MlogP is the measured 
partition coefficient. There are various methods for calculating logP (22). The 
most extensively supported method is that of Leo (22,25). Following equation 
illustrate the quality of Leo's method: MlogP = 0.96 (± 0.003) ClogP + 0.07 (± 
0.008); n = 12,510, r2 = 0.973, q2 = 0.973, s=0.300. The high correlation 
coefficient of r2=0.973 assures one of the value of this method. 

ClogP explains: (a) random walk process in movement of the drug molecule 
in the organism from site of injection to sites of action, (b) hydrophobic 
interactions between ligand and receptor. ClogP is for the neutral form of acids 
and bases that may be partially ionized. If the degree of ionization is about the 
same for a set of congeners one can neglect the ionization factor. If not, using 
electronic terms one can often obtain good correlations. 

n is the hydrophobic parameter for substituents attached to benzene (2). 
Most of the published n constants are from the benzene system. For substituents 
with lone pair electrons (e.g. N), n for groups varies with electron effects of 
other substituents (e.g. n for OMe on benzene is not the same as OMe on 
pyridine or nitrobenzene). Calculating ClogP for a derivative and subtracting it 
from ClogP for the parent compound solve this problem. CQSAR program uses 
a parameter 'Cn' that calculates the n value of substituents for systems other than 
benzene. 

Electronic parameters (0, a", 0+, 0i> a*, F) 

a, a", and a + are Hammett electronic parameters, which apply to substituent 
effects on aromatic systems (8,24-28). The normal 0 for substituents on aromatic 
systems where strong resonance between substituent and reaction center does not 
occur is defined as 0 = logKx-logKH, where K H is the ionization constant for 
benzoic acid (normally in water or in 50% ethanol) and K x is that for substituted 
benzoic acid. 0" and 0+ are employed where there is a strong resonance 
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interaction between substituent and reaction center (24,25). G i is a measure of 
inductive effect of aliphatic substituents (26). Taft a* applies electronic effects 
in aliphatic systems (27). F is the field (inductive) effect of an ortho substituent 
(28). 

Steric Parameters (CMR, Bl, L, B5, E s , MgVol) 

CMR is the calculated molar refractivity for the whole molecule. MR is 
calculated by using Lorentz-Lorenz equation as follows: (n2 - l/n2 + 2) (MW/d), 
where n is the refractive index, MW is the molecular weight, and d is the density 
of a substance. MR is dependent on volume and polarizability. In CQSAR, MR 
values have been scaled by 0.1. MR can be used for a substituent or for the 
whole molecule (2). Recently, CMR along with NVE (net valence electrons) 
have also been found to account for the polarizability effects in ligand-substrate 
interactions (29). 

Bl, B5, and L are the Verloop's sterimol parameters for substituents (30). 
B1 is a measure of the width of the first atom of a substituent, B5 is an attempt to 
define the overall volume, and L is the substituent length. 

E s is the Taft steric constant (37). It is based on the acid catalyzed 
hydrolysis of oc-substituted acetates, and represents the steric effect of 
intramolecular and intermolecular bulk, which hinders the reaction or binding. 
MgVol is the molar volume calculated by the method of McGown (32). 

Comparative QSAR Studies on Anti-HIV-1 Protease Drugs 

AIDS is the end stage manifestation of prolonged infection with HIV, 
particularly HIV-1, the most common form of the virus. Medicinal chemists have 
explored all the intervention stages in the viral life cycle to develop anti-HIV-1 
chemotherapy. HIV-1-protease inhibitors, in particular, has drastically decreased 
the mortality and morbidity associated with AIDS. The determination of three-
dimensional structure of HIV-1 protease, obtained through X-ray crystallography 
and the synthesis of the protease facilitated the development of HIV-1 protease 
inhibitors (33,34,35,36). 

At present CQSAR database contains 225 QSAR on HIV-1 inhibitors. Out 
of which 70 are on HIV-1 protease. Cyclic urea (Figure 1) based non-peptidic 
HIV-1 protease inhibitors have been very well studied from SAR and QSAR 
point. Comparative study of cyclic urea QSAR models drawn from CQSAR 
database and literature discussed here provide an excellent example of 
integration of QSAR and Cheminformatics (37). 
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QSAR 1 and 2 was formulated for the data of Lam et al. (38) reported for 
the inhibition of HIV-1 protease (Kj) and antiviral activity (IC90) of cyclic urea 
derivatives (Figure 2), in which X-substituents were mostly alkyl groups. 

Figure 3 Figure 4 

logl/Kj = 1.44(±0.42)ClogP - 2.13(±0.64)log(P.10clogP + 1) + 0.68(±0.42)MRX 

-0.64(±2.22) 

n = 21, r2 = 0.813, s = 0.51, q2=0.727, logP0 = 6.53, Outliers: 5 (1) 

logl/IC90 = 0.77(±0.25)ClogP~ 1.24(±0.48)log(p.l0c , o g P+ 1) + 1.05(±1.37) 

n = 15, r2 = 0.813, s = 0.33, q2=0.665, logP0 = 6.96 , Outliers: 2 (2) 

In QSAR 1 and 2, Kj is the HIV-1 protease inhibition constant and IC90 is 
the molar concentration of the compound required to reduce the concentration of 
HIV viral RNA by 90% from the level measured in an infected culture, n, is the 
number of data points in the particular dataset studied, r is the correlation 
coefficient, s is the standard deviation, q is the quality of fit, and the data within 
parentheses are for the 95% confidence intervals. LogP0 is the optimum value of 
logP. Outliers indicate the number of the molecules of the data set that are not fit 
in the QSAR model. The presence of outliers in QSAR is discussed later. 

Both QSAR models show bilinear dependence of the inhibitory activity on 
the ClogP. This means that the inhibitory activity decreases if a molecule is more 
hydrophobic than its optimum value (logP0 = 6.53 and 6.96 respectively for both 
the series). In the first QSAR, MRX was also found significant for the X-
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substituents at P 2 and P 2 ' position of cyclic urea. MR is the molar refractivity of 
the substituent and is a measure of its size and polarizability. 

Out of 14 QSAR models reported for different class of cyclic urea HIV-1 
protease inhibitors (37), only the two shown here contain hydrophobic terms. 
Interestingly all the other cyclic urea in which there was no hydrophobic term, 
contain X-benzyl substituents at P/P' position (Figure 1). Maybe the rigid phenyl 
ring blocks the substituents from interacting with the hydrophobic space of the 
active site. However, a significant steric interaction with the receptor seems to be 
involved in almost all of them as evident by the occurrence of steric terms in 
other QSAR (37). 

Comparative molecular field analysis (CoMFA) of diverse cyclic urea HIV-
1 protease inhibitors also established steric and electrostatic interactions between 
ligand and receptor binding site (39). The same studies revealed significant 
contribution of hydrophobicity toward protease inhibitory activity. 

Out of 12 QSAR reported on pyranones (37), only two-showed hydrophobic 
term (QSAR 3 and 4). QSAR 3 was based on Romines et al. (40) data for 
cycloalkylpyranones derivatives (Figure 3), and QSAR 4 was based on Tait et al. 
(41) data for dihydropyranones (Figure 4) for HIV-1 protease inhibition. 

logl/Kr = 5.44(±3.81)ClogP - 0.61(±0.37)(ClogP)2 - 3.84(±9.58) 

n=9, r2=0.910, s=0.24, q2=0.770, logP0 = 4.49, Outliers: 2 (3) 

logl/ICso = 0.82(±0.32)ClogP - 0.44(±0.20)B5X + 4.05(±1.11) 

n=10, r2=0.841, s=0.12,q2=0.742, Outlier: 1 (4) 

In QSAR 4, the B5 X term was also found significant. B5 is Verloop's width 
parameter (30) and indicates the steric interactions of the substituents at the 
active site. 

Except for these two QSAR shown here, others did not reveal the presence 
of any hydrophobic term (37). Garg et al. postulated that may be due to some 
spatial restrictions these molecules are not able to bind in hydrophobic space as 
the protease receptor does have hydrophobic binding sites. The optimum size of 
the cycloalkyl ring should be 8-membered indicate maximal hydrophobic 
interaction of the ring with the receptor (42). 

HIV- protease is a C 2 symmetrical homodimer (33). The C 2 axis of the 
enzyme lies between and perpendicular to catalytic aspartates (Asp 25 and Asp 
25 ) in the active site. The Si and S/ (S2 and S 2 etc) subsites are structurally 
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identical and hydrophobic (43,44). It has also been proposed that there are 
multiple hydrogen bonding possibilities with HIV-1 protease receptors (44). 
Hydrophobic as well as hydrogen bond interactions have been shown to be 
equally significant in HIV-1 protease inhibition by QSAR studies (45). Wang et 
al. (46) observed that at least two factors are important in the binding of a 
compound to HIV-1 protease. The first is the conformational flexibility of the 
inhibitor molecule and the second is the hydrophobic interactions between an 
inhibitor and the enzyme. Favorable interactions with hydrophobic pockets at 
active site are desirable for an inhibitor to achieve nanomolar potency (47). 

The ClogP values of U.S. Food and Drug Administration (FDA) approved 
HIV protease drugs in the market and optimum logP observed in the QSAR 
models were found surprisingly close. The stereo diagram of binding of a cyclic 
urea protease inhibitor in the HIV-1 protease pocket indicated that the phenyl 
groups in the cyclic urea inhibitors make hydrophobic interactions with the 
hydrophobic residues (37). 

FDA Approved Protease Inhibitors ClogP* 

1. Saquinavir (Invirase®) 4.73 
2. Ritanovir (Norvir®) 4.94 
3. Indinavir (Crixivan®) 3.68 
4. Nelfinavir (Viracept®) 5.84 
5. Amprenavir (Agenerase®) 3.29 
•Calculated using CQSAR program (10) 

QSAR equation Optimum LogP (logP0) 

1 6.53 
2 6.96 
3 4.49 

The majority of HIV research is done with cells and these studies tend to 
over estimate logP0 for animal systems. From a study of CQSAR database 
(omitting QSAR based on charged molecules), it has been found that logPo for 
cells is about 2 log unit higher than for whole organisms (10). Thus values above 
4 for logP0 may be too high. 

Most QSAR models developed for HIV-1 protease inhibitors did not show 
hydrophobic terms, when there are certainly hydrophobic binding sites at the 
receptor. It could be due to the fact that most of the equations were based on a 
small number of data points. The variation in the substituents also does not allow 
for much choice in the use of different physicochemical parameters. A minimum 
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of five data points with good variation in substituents is required per parameter 
to derive a meaningful QSAR. 

QSAR analysis often shows presence of the outliers ('congeners' that do not 
fit the 'final* QSAR). Some of the reasons could be: 

1. The mathematical form of the equation may not reflect the true interactions 
at the binding site. 

2. Sometimes the parameters selected may not be the best. Lateral validation 
using comparative QSAR guides in the choice of meaningful parameters 
(13-15,37,49). 

3. The quality of the experimental data coming from different laboratory 
affects the quality of QSAR. This problem can be taken care by comparing 
several QSAR models derived for the same systems (12). 

4. The outliers that seem to be 'congeners* but in fact are not. This arises 
from trying to lump too many more or less similar compounds into a single 
QSAR (16,50), 

5. Different rates of metabolism of the members of a set affect the activity 
data. The uncertainty that exists in describing what all is occurring with 
testing of a set of 30-40 'congeners' in even a simple cell culture is enormous 
(14% 

Therefore, one has to expect outliers that must not be forgotten for they are 
the leads to new understanding. To cover them up by including them in a QSAR 
can be more confusing than helpful. 

Prolonged use of HIV protease drugs have lead to the development of 
resistant mutant strains that are less sensitive to the inhibitors (48). The 
emergence of mutant virus and occurrence of side effects suggest that it is 
essential to continue the research to develop new inhibitors. 

A number of structure-activity analyses using both 2D classical QSAR 
(37,45,49,51-53) and 3D QSAR approaches (39,54-57) have provided insight in 
the ligand-HIV-1 -protease interactions involving different classes of inhibitors. 
Due to the limitations of every single structure-activity approach, a combination 
of 2D and 3D QSAR approaches is important to understand complex 
phenomenon contributing to anti-HIV-1 protease activity. Lateral validation of a 
biological QSAR from a physical organic viewpoint and added biological 
perspective, makes CQSAR an important approach in cheminformatics for 
mechanistic interpretation, and can provide important lead(s) in drug 
development. 
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Chapter 8 

Prediction of Protein Retention Times 
in Anion-Exchange Chromatography Systems Using 

Support Vector Regression 
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ABSTRACT 

Quantitative Structure-Retention Relationship (QSRR) models 
are developed for predicting protein retention times in anion 
exchange chromatography. Constitutional, topological and 
electron-density-based descriptors are computed directly from 
the protein crystal structures. These QSRR models are 
constructed based on the Support Vector Regression (SVR) 
algorithms. To accomplish this, a two-step computational 
strategy was adopted. In the first step, a linear SVR was 
utilized as a variable selection method and the relative 
importance of selected descriptors is analyzed using the star 
plot visualization approach. Subsequently, the selected 
features are used to produce nonlinear SVM bagged models. 
After validation, these predictive models may be used as part 
of an automated virtual high-throughput screening (VHTS) 
process. 

© 2005 American Chemical Society 111 
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I. INTRODUCTION 

Ion-Exchange Chromatography (IEC) is one of important bioseparation 
technique at the heart of drug discovery and developing biotechnology. This 
form of chromatography takes advantage of the fact that the biopolymers, such 
as proteins, have different degree of interaction with the oppositely charged 
resin surface; this lead to their different retention characteristics during the 
separation process. The selectivity of this technique is also depended on the 
experimental environment, such as composition of the stationary phase or the 
pH of the mobile phase. Consequently, one of the challenges is to select 
appropriate combinatorial conditions as so to achieve best purification for a 
given biological mixture. 

It has been suggested that virtual screening (VS) of separation materials or 
experimental condition in a manner that parallels current lead discovery 
techniques in drug design would probably facilitate bioseparation development 
processes. Different statistical algorithms, such as Principal Component 
Regression (PCR)1, Partial Least Squares (PLS)2'3, and Artificial Neural 
Networks (ANN)4,5, have been employed to construct the Quantitative Structure-
Retention Relationship (QSRR) models6 within the chromatography community. 
In the current study, a novel modeling approach based on Support Vector 
Machine (SVM) Regression7 was present to predict the retention time of proteins 
in anion exchange systems. Meanwhile, a visualization tool, the star plot, is 
employed to aid in model interpretation. The test data that hold out during the 
training process is used to validate the predictive power of the constructed 
models. The objectives of our study are to construct improved QSRR models to 
predict the retention behavior of proteins in specific experimental conditions and 
choose the optimal separation condition to achieve best purification, as well as 
to build a valuable interpretation tool for the protein retention mechanisms. 

II. SUPPORT VECTOR REGRESSION (SVR) 

SVMs8 are a class of supervised learning algorithms originally developed 
for pattern recognition and later its basic properties were extended by Vapnik to 
solve the regression problems. Given the target valuer and the hypothesis space 
consisting of linear functions in the form of (w -x) + b, the classical SVR try to 
find a function ffxj) that minimizes the overall regularized risk9: 

M 

i=I 
M 

In the above formula, the first term ^ l ^ i c o m p u t e s the training 
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error and the second term, the /2-norm - ~ | | M | 2 of normal vector, controls the 

model complexity. The C is a regularization parameter determining the tradeoff 
between training error and model complexity. In support vector machine, the 
training error is represented by the e-insensitive losses (illustrated in figure 1), in 
which only those deviations larger than the tolerance errors would be considered 
as errors. The magnitude of e would be roughly the estimated error in 

1 2 
experimental measurement. In the regularization factor JL , co is the weight 

vector to be determined in the function / The SVR problem can be posed as a 
convex optimization problem as follows: 

minimize
 c£fe+£)+dMf (2) 

subjectto yt -(w-*,)-fe<£' + £ , £ £ 0 

i=l,2, M 

% and stand for the slack variables that measure the deviation distance from 
the data point to the e tube. 

^ - i n s e n s i t i v e l o s s f u n c t i o n 

Figure 1. Graphical depiction of an e-insensitive loss function. 
Only the deviations of data points larger than s, such as £, will be considered 

as the errors. 

Another main characteristics of SVR is to map the original data point x into 
a higher dimensional feature space via the nonlinear kernel function k(xh x), and 
then perform the linear regression in that high dimensional feature space so as to 
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achieve the nonlinear relationship with respect to the original input space. Now 
the function/can be written in the form of a kernel expansion as: 

III. DATASET GENERATION 

Protein Retention Dataset 

There are two main kinds of IEC system: cation-exchange and anion-
exchange chromatography. This study will only focus on the anion-exchange 
system, which bears the positively charged functional groups on its resin 
surface. The crystal structures of 24 structurally diverse proteins were 
downloaded from the RSCB Protein Data Bank10. The retention times for these 
proteins were obtained by carrying out linear gradient chromatography using the 
anion exchange stationary phase Source 15Q. Three proteins were randomly 
selected as external test cases from this original list. 

Descriptor Generation 

As we known, the direct calculation of quantum chemical descriptor for 
large molecules at a high level of theory is usually prohibitive. The concept of 
"Transferable Atom Equivalents" (TAEs)11,12, based on Bader's quantum theory 
of Atoms in Molecules (AIM)13, provides an efficient alternative to calculate 
these electron-density derived descriptors. Transferable Atom Equivalents are 
defined as those atomic electron density fragments bounded by interatomic zero-
flux surfaces (\7p(r)n(r) = 0, for all points on the surface) and an extended 
isodensity surface that approximates the condensed-phase van der Waals 
surface. An atomic property (A) can then be expressed as the integral of a 
corresponding property density pA(r) over an atomic basin: 

A(Q)= jndrpA(r) where A ( r ) = ( i V / 2 ) J r f r | / ^ + ^ j <4) 

TAE fragments carry ten atomic charge density-derived properties (listed in 
Table 1) that were pre-computed from small molecules using ab initio wave 
functions at the 6-3 KG* level of theory. The distributions of these electronic 
properties computed on electronic density isosurfaces may be characterized as 
molecular property descriptors by histogram binning, averaging or sampling the 
property extrema or standard deviation. The RECON (RECONstruction) 
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program assigns the closest fragment match from the TAE library to each atom 
in the protein based on its structural and chemical environment. Consequently, a 
large set of electron density-based TAE descriptors for proteins can be obtained 
by summing up the corresponding electronic properties of transferable atomic 
fragments: Amolecule = A(q) These descriptors contain certain information 
about molecular basicity, hydrophobicity, hydrogen-bonding capacity and 
polarity as well as polarizability. 

The MOE program provides a widely applicable set of classical molecular 
descriptors, including traditional physicochemical properties, connectivity-based 
topological 2D and shape-dependent 3D molecular features. These descriptors 
have been applied to the construction of QSAR/QSPR models for boiling point, 

Table 1. TAF Atomic Electronic Surface Properties 

EP Electrostatic Potential 

Del(Rho) • N Electron Density Gradient normal to 0.002 e/au3 electron 
density isosurface 

G Electronic Kinetic Energy Density 
G = ( - (T| / Am) J{V y * • V^Jrfr) 

K Electronic Kinetic Energy Density 

a: = -^/4«)J^V^+^vV*W 
Del(K) • N Gradient of K Electronic Kinetic Energy Density normal to 

Surface 

Del(G) • N Gradient of B Electronic Kinetic Energy Density normal to 
surface 

Fuk Fukui F + function scalar value 

Lapl Laplacian of the electron density V 2 p 

BNP Bare Nuclear Potential BNP(J) = lrtj 

i=\ 

PIP Local Average Ionization Potential PIP(r) = ̂  p l p ( r ) 
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vapor pressure, the free energy of solvation in water, as well as water solubility 
and blood-brain barrier penetration.14 

A total of 243 descriptors, including electron density-derived and traditional 
descriptors, were then computed for these proteins and subjected to SVR 
training and cross-validation experiment. 

IV. METHOD IMPLEMENTATION 

/i-norm v -SVR and Implementation Strategy 

In this study, we adopt a variation of the classical SVR called v support 
vector regression (v - SVR).15'16 In v-SVR, e itself is a variable in the 
optimization process and is controlled by another new parameter v € (0,l). The 
v is the upper bound on the fraction of error points and the lower bound on the 
fraction of points inside the e-insensitive tube, which is much easier to estimate 
beforehand than e. In addition, in order to reduce the computational cost, a linear 
program, instead of a quadratic program, is formulated for SVR. The /rnorm is 
applied directly to the coefficients apj = 1,...M in the kernel combination Eq. 

(3). It can be computed as ^[^Jajor rewritten as ^^._x{ctj-\-a^ we define 

aj=aj~a], where a.>0 and a*>0- Substitution of |̂|w|2 by 

2̂ (0, + a*) yields the linear program. 
A two-step computational strategy was adopted: First, a /rnorm linear SVR 

was utilized as a variable selection method to identify relevant molecular 
descriptors: second, a set of nonlinear SVR models derived based on kernel 
mapping were constructed using the selected features. In addition, a statistical 
technique called "bagging" (Bootstrap Aggregation) was applied to improve 
model generalization performance. 

Feature Selection 

For most QSAR or QSRR data, one of common problems is that the number 
of observations is much fewer than that of descriptors. So it is essential to utilize 
efficient feature selection or regularization methods to remove irrelevant 
descriptors and increase the accuracy. Also it will speed up the whole learning 
process and make interpretation easier by emphasizing only a few relevant 
features. A variety of algorithms, such as forward selection,17 simulated 
annealing,18 genetic algorithms,19,20 K-nearest neighbor,21 evolutionary 
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programming, ' artificial ants, and binary particle swarms , have been 
implemented in the QSAR or QSPR studies. 

The feature selection method used in this work exploits the fact that linear 
SVR with /rnorm regularization inherently performs feature selection as a side 
effect of minimizing function capacity during the modeling process.27 In a linear 
regression model in the form of y = (a-x) + b, each component of vector a 

provides a weight for the corresponding feature, thus providing a measure of its 
significance in the model. Moreover, the sign of each component ax indicates the 
effect of the / t h feature on the observed response. If Oj > 0, the feature contributes 
positively to the response y, and when negative it diminishes y. Training support 
vector machines involves maximization of the "margin", a term that is inversely 
proportional to the norm of the weights . The margin is defined as the 
geometric width of the e-tube and it provides a measure of model complexity. 
Maximizing the margin (or minimizing the norm of the weights) implicitly 
makes the optimal weight vector sparser. A vector is sparse if the number of 
non-zero components (descriptor weights) in the vector is small. This method of 
feature selection is formulated as an /i-norm linear v-SVR aimed at producing a 
sparse weight vector. We refer to it as the sparse linear v-SVR, and it can be 
stated in the following manner: 

minimize + ^ ) + C T 7 Z f e +£)+Cve (5) 

subject to yt - £ (aj " a ; K + h " ~ E + ' = 1 ' 2 ' " " ' M 

^(aj-a*}cij^b-yi<£ + ^, 

aj9 a], £ , £ , * > 0 , j = 1,2,..,N, / = 1,2,...,M 

The /rnorm SVR optimization can enhance the sparsity of a because it 
more intends to drive the weights of irrelevant descriptors to zero. Those 
descriptors with nonzero weights then become potentially relevant features to be 
selected and used to build a subsequent nonlinear model. 

In the case of much more descriptors than the observations, even small 
perturbations of the training set may lead to large variations in the learning 
process. In other words, slightly changing the training set results in different 
linear models and then different sets of nonzero-weighted descriptors. Recent 
research reported in the literature has shown that if used with care, ensemble 
modeling can improve the generalization performance particularly for unstable 
non-linear models, such as those involving neural networks.28 The technique of 
bootstrap aggregation (or "bagging")29'30 is used to stabilize the learning process 
and ensure that a robust set of features are selected. The idea is to construct a 
series of individual sparse SVR predictors (models) using a random partition 
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technique31, record the selected descriptors for each individual bootstrap and 
then take a union of all descriptors into a single final feature set. 

The overall feature selection scheme is illustrated in Figure 2. The 
following process was carried out in our study: 

• Multiple training and validation sets were developed from a master 
training dataset using a random partition scheme; 

• A series of linear SVMs were constructed on the training and validation 
sets to generate the linear models that achieve good cross-validated 
correlation coefficients. 

• Subsets of features having nonzero weights in the linear models were 
selected; 

• Finally, the features obtained in all previous steps were aggregated to 
produce the final candidate set of descriptors. 

Mater training data 

Partition data 

( ^ " T r a i n i n g s e ^ _ ^ ^ Validation set 

Choose C, v Linear model 

Pattern 
Search 
Scheme 

Repeat N times 
Choose best parameters 
Construct linear Model 

Bag N linear models 
Obtain final feature subset 

Figure 2. General framework of Feature selection scheme 

Nonlinear Regression Bagging Models 

Once a set of features is selected, a nonlinear v-SVR with a Gaussian kernel 
shown in Eq. (6) is used to construct the QSRR models using these features: 

k{x,x^Qxp{-\x~xf 12a1) (6) 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

00
8

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



119 

This allows us to obtain the regression function/as a linear combination of 
only a few kernel functions. The sparse nonlinear v-SVR is formulated as 
follows: 

minimize ^(aj + a >) + C T7Zfe + £ ) + C w (7) 

subjectto k(xnXj)-b<£-¥^, / = 1,2,...,M 

£ ( a , - < * j ) *(x/,xy)+6-(y/^f + ̂ , / = 1,2,..,M 

a,, a*, £ , *>0, iJ = \,2,...,M 

The appropriate values for SVR parameters, a, C and v, were selected by 
patter search algorithm.27,32 In order to decrease the possibility if bias on one 
particular model, the "bagging" technique was again utilized to construct a 
ensemble of individual SVR predictive models over the selected features, which 
would be used to generate the final nonlinear SVR predictors <fibag(x)> 

&bag (x)= X ^ M ' W ^ e r e ^ *s ̂ e cardinality °f the ensemble (8) 

V. RESULTS AND DISCUSSION 

SVR Feature Selection and Bagging Prediction Results 

In this feature selection procedure, 20 sparse linear SVM models were 
constructed based on 20 different random partitions of the training data. In the 
final aggregate SVR model, there were only seven descriptors remaining with 
nonzero weights, which would be considered as the most relevant to protein 
retention response. These seven descriptors and their primary definitions or 
related chemical information are described in Table 2. 

Figure 3 shows protein retention prediction obtained before verse after 
feature selection based on nonlinear SVR aggregate models. In this figure, the 
observed retention times (horizontal axis) are plotted against the corresponding 
predicted values for each protein obtained. The cross validation predictions of 
training set were shown by blue color, while the blind test data held out during 
model generation or validation step were indicated by red. The vertical bar 
shows the full prediction range of retention time of twelve bagged models for 
each protein and the asterisk in the bar stands for the bagged (average) result of 
12 bootstraps for each protein. Before feature selection, the cross-validation for 
training set produced an R2

CV = 0.851 and for the blind test set the bagged result 
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Table 2: Definition of the relevant descriptors obtained 
from sparse SVR feature selection 

Descriptor Name Chemical information encoded in these 
descriptors 

PEOE.VSA.FPPOS (MOE) Fraction of positive polar Van der Waals surface area. 
The Partial Equalization of Orbital Electronegativities 
(PEOE) method of calculating the atomic charges was 
developed by Gasteiger" 

FCHARGE (MOE) Total charge of molecule (sum of formal charges) 
PIP2 (TAE) The second histogram bin of PIP properly. Local 

average ionization potential in the low range 
PIP20 (TAE) The last histogram bin of PIP property. Local average 

ionization potential in the high range 
SIKIA(TAE) K electronic kinetic energy density, which correlates 

with the presence and strength of Bronsted basic sites, 
(integral average) 

SIGIA (TAE) Derived from the G electronic kinetic energy density 
on the molecular surface. Similar in interpretation to 
SIKIA, but provide supplemental 
information. 

VSA.POL Sum of Van der Waals surface of'polar" atoms 

is R2bag

 = 0.926. On the other way, after feature selection the cross-validated 
R2cv = 0.882 and the test set R2

bag = 0.988. It may be observed that the final non­
linear model performs better with only seven features than with the original 243 
descriptors. The reduction in features also simplifies the model and allows for 
better interpretation, which will be discussed in the following paragraphs. 

Since the seven descriptors were selected based on an ensemble of SVR 
models, in the current work, a graphic visualization tool for multivariate data, 
known as "star plots"34 in multi-plot format, were used to characterize the 
relative importance of these descriptors and its consistency across all models 
based on the size and shape of plots. In our case, each plot consists of a 
sequence of equi-angular spokes around a given central point representing one 
descriptor in the investigated data matrix. A line is drawn to connect the ending 
point of each spoke, producing the star-like appearance. The length of each equi­
angular spoke stands for the assigned weight for corresponding descriptor in 
each of twenty bootstraps or constructed sparse SVR models. Finally, the 
descriptors were ranked for all 20 bootstrap iterations in column-wise fashion 
based on either the sum of all 20 radii or the area of the star can be used to 
represent the overall relative importance of the descriptor over all 20 bootstraps. 
Descriptors with cyan slash background have negative contributions to the 
retention time, while the red dot background indicates the positive effect. For 
instance as shown in following figure, PEOE.VSA.FPPOS has the largest 
negative effect on retention time and PIP2 has the largest positive effect on 
retention time. 
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The MOE descriptor PEOE.VSA.FPPOS represents the fraction of the 
protein positively charged surface area. As shown in above figure, its negative 
weight means that greater fractional positive surface area decreases the protein 
retention time. This result is consistent with the net charge hypothesis that 
proteins with low negative charge densities will interact more weakly with the 
resin, and will elute first. It is expected that electrostatic effects between the 
positively charged functional group on resin surface (quaternary ammonium 
functional groups N(CH3)3

4) and the negatively charged protein surfaces will 
play an important role in anion-exchange system. The same explanation can 
account for the appearance of another descriptor FCHARGE. This descriptor 
computes the total formal charge of the protein that is negative in cases where 
the solution pH is higher than their isoelectric point (PI). The negative sign of 
its weight in the sparse SVR models is in agreement with the fact that positively 
charged resin surface exhibit a favorable affinity for the protein with more 
negative charge. The apparent insignificance of this descriptor is due to the fact 
that the electrostatic effect has already been represented by other selected 
electrostatic-related descriptors, such as PEOE.VSA.FPPOS. 

MOE descriptor, VSA.POL, approximates the VDW surface area of polar 
atoms (both hydrogen bond donors and acceptors). The appearance of this 
descriptor implies that the hydrogen bonding capacity of proteins may also be 
involved retention process because the surrounding solvent (water) can interact 
favorably with those charged or polar side chains on the protein surface. Thus, 
even a protein with a moderate polarity has to pay an energetic penalty that 
increases in proportion to the overall polar surface of the protein. In other words, 
a protein with more polar atoms on the exposed van der Waals surface will have 
a stronger hydrogen-bonding capacity with the mobile phase and will elute out 
of the column first, accounting for the negative effect of VSA.POJ, for retention 
shown in the star plot. 

Several TAE electron density-based descriptors listed in Table 2 were found 
to be significant to retention, e.g. SIKIA, SIGIA and PIP. Prior to feature 
selection, there were twenty PIP descriptors present in the descriptor set, where 
PIP1 and PIP2 represent regions of the molecular surface where electron density 
is easily ionizable, while PIP20 is associated with regions of tightly held 
electron density, such as on exchangeable protons. SIGIA and SIKJA describe 
the integrals of G and K electronic kinetic energy densities found on the 
molecular van der Waals surface. These descriptors are associated with the 
presence and the strength of Lewis basic sites. As shown in star plot, PIP2, 
SIKIA and SIGIA correlate with increased retention time. This may be due to 
their representation of increased dipole/induced-dipole or charge/induced-dipole 
forces between the protein and the strong ion-exchanger groups as well as 
induced-dipole/induced-dipole interactions between the polarizable aromatic 
groups of the stationary phase and polarizable regions of the protein. The PIP20 
descriptor was found to he anticorrelated with retention time, indicating that the 
presence of non-acidic hydrogen bond donors (serine, etc) increases 
solute/mobile-phase interactions at the expense of solute/stationary phase 
interactions. 
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V. CONCLUSIONS 

In this work, Support Vector Machine (SVM) regression methods were 
introduced in both the feature selection and model construction steps to predict 
protein retention time in anion-exchange chromatographic systems. Extensive 
cross-validation of the modeling results was accomplished using bootstrapping 
approach, and then visualized and interpreted using star plots scheme. This 
modeling scheme not only has been prove useful for comparative QSRR studies 
in protein separation studies, but also can be extended to current QSAR study in 
drug discovery, such as ADME/T virtual screening. 
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Chapter 9 

Analysis of Odor Structure Relationships Using 
Electronic Van Der Waals Surface Property 

Descriptors and Genetic Algorithms 

Barry K. Lavine1, Charles E . Davidson1, Curt Breneman2, 
and William Katt2 

1Department of Chemistry, Oklahoma State University, 
Stillwater, OK 74078-3071 

2Department of Chemistry, Rensselaer Polytechnic Institute, 
Troy, NY 12180 

This chapter describes a new odor structure relationship (OSR) 
correlation methodology that utilizes large olfactory databases 
available in the open scientific literature as input. The first 
step in this procedure is to represent each molecule in the 
database by an appropriate set of molecular descriptors. To 
accomplish this task, Breneman's Transferable Atom 
Equivalent (TAE) descriptor methodology is used to create a 
large set of electron density derived shape/property hybrid 
descriptors. These descriptors have been chosen because they 
correlate with key modes of intermolecular interactions and 
contain pertinent information about shape and electronic 
properties of molecules. In contrast to more traditional 
methodologies that have shown not to be effective, our use of 
shape-aware electron density based molecular property 
descriptors has eliminated many of the problems associated 
with the use of descriptors based on substructural fragments or 
chemical topology. A second reason for the limited success of 
past OSR efforts can be traced to the complex nature of the 
underlying modeling problem. To meet this challenge, we 
have developed a genetic algorithm for pattern recognition 
analysis that selects descriptors, which create class separation 
in a plot of the two or three largest principal components of the 
data. Because principal components maximize variance, the 
bulk of the information encoded by these descriptors is about 
differences between the odorant classes in a data set. 

© 2005 American Chemical Society 127 
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Olfaction is a poorly understood phenomenon. Although an integral 
part of every day life, there is a dearth of information about the 
relationship between chemical structure and odor quality in spite of the 
fact that many theories have been proposed to correlate molecular structure 
with the perceived odor quality of a compound [1-7]. It is generally 
agreed that a compound must be volatile and water and lipid soluble in 
order for it to have an odor. Beyond this general description, there is no 
consensus among researchers as to which molecular properties and 
structural features are responsible for the olfactory impressions invoked by 
compounds. 

Analysis of odor structure relationships (OSRs) using computer 
generated molecular descriptors and pattern recognition techniques offers 
a practical approach to the study of odorants. The heart of this approach is 
finding a set of molecular descriptor from which discriminating 
relationships can be found. In previously published OSR studies [8-15], 
only fragment based, topological, and geometric descriptors, (e.g., 
molecular connectivity indices, substructures, substructural molecular 
connectivity indices, molecular volume, and principal moments of inertia) 
have been used to describe molecular shape and characterize the electronic 
properties of the compounds. Descriptors that contain information about 
the olfactory process need to be developed and tested in order to formulate 
more effective OSRs. 

We have been studying musk odorants and structurally related 
nonmusk compounds using computer generated molecular descriptors and 
pattern recognition techniques. Our interest in musks is both commercial 
and academic. Almost all fragrances sold commercially contain musks 
because of their strong fixative properties. Musks are also interesting from 
an OSR viewpoint because they contain a variety of different structural 
types. There is a wealth of information in the open scientific literature 
about musks. Because these compounds have a distinct odor that is rarely 
confused with any other odor, well characterized data sets with few 
mislabeled compounds can be obtained from the open literature. 

In a previous study [16], we used discriminant analysis to differentiate 
musk from nonmusk compounds based on a set of 14 computer generated 
molecular descriptors. A training set consisting of 148 indane, tetralin, 
and isochroman compounds (67 musks, 81 nonmusks) was studied. A 
discriminants developed from the set of 14 molecular descriptors correctly 
assigned every training set compound into its respective category: musk or 
nonmusk. To test the predictive ability of these descriptors and the linear 
discriminant associated with them, an external validation set of 15 
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compounds was used. The same 14 molecular descriptors that correctly 
classified every compound in the training set were generated for each 
compound in the validation set. The values of these descriptors were 
autoscaled using the mean and standard deviation from the original 
training set data. Of the 15 compounds, 14 were correctly classified by the 
linear discriminant developed from the training set data. The results of 
this study indicate that several molecular parameters rather than a single 
molecular parameter are necessary to predict musk odor quality. 
Molecular shape was an important factor but it was by no means the only 
factor for the prediction of musk odor quality. In all likelihood, the 
perception of odor is probably initiated by the interaction of the odorant 
with an olfactory receptor site in the nose. Olfactory excitation can only 
occur if the size and the shape of the stimulant is the complement of the 
receptor or if the stimulant possesses sufficient conformational flexibility 
to attain the correct shape. The spatial arrangement of the stimulant's 
functional and steric groups must also conform to the overall 3-
dimensional geometry of the receptor. 

In the present study, a new methodology to facilitate the design of new 
odorants such as musks is described. The introduction of a new odorant 
can be a lengthy, costly, and laborious process. This process can be 
streamlined if large olfactory databases available in the open scientific 
literature are used as input for a new odor structure relationship correlation 
methodology. The first step in this procedure is to characterize each 
molecule in the database by an appropriate set of molecular descriptors. To 
accomplish this task, we have used Breneman's Transferable Atom 
Equivalent (TAE) descriptor methodology to create a large set of electron 
density derived shape/property hybrid descriptors [17]. These descriptors 
have been chosen to represent the problem because they have been shown 
to be correlated with key modes of intermolecular interactions, and they 
contain pertinent information about shape and electronic properties of 
molecules. By comparison, more traditional OSR methodologies have 
been shown not to be as effective. Our use of shape-aware electron density 
based molecular property descriptors has eliminated many of the problems 
associated with the use of descriptors based on substructural fragments or 
chemical topology. 

A second reason for the limited success of past OSR efforts can be 
traced to the nature of the underlying modeling problem, which often is 
quite complex. To meet these challenges, we have developed a genetic 
algorithm for pattern recognition analysis that selects descriptors, which 
create class separation in a plot of the two or three largest principal 
components of the data [18-23]. Because principal components maximize 
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variance, the bulk of the information encoded by these descriptors is about 
differences between the odorant classes in the data set. The principal 
component analysis routine embedded in the fitness function of the pattern 
recognition GA acts as an information filter, significantly reducing the size 
of the search space since it restricts the search to feature sets whose 
principal component plots show clustering on the basis of class. In 
addition, the algorithm focuses on those odor classes and/or samples that 
are difficult to classify as it trains using a form of boosting. Samples that 
consistently classify correctly are not as heavily weighted as samples that 
are difficult to classify. Over time, the algorithm learns its optimal 
parameters in a manner similar to a neural network. The pattern 
recognition GA integrates aspects of artificial intelligence and 
evolutionary computations to yield a smart one pass procedure for feature 
selection and classification. The efficacy of this methodology has been 
evaluated using a structurally diverse database consisting of 331 
macrocyclic and nitroaromatic compounds (192 musks and 139 
nonmusks). 

Musk Data Set 

All compounds used in the present study have been taken from 
literature reports of chemical structure and odor quality [24-29]. The 
structural classes present in the data set are shown in Figure 1. Natural 
musks, whose sources include both rare animal and plant species, are 
macrocycles. The first synthetic musks prepared were nitrated derivatives 
of benzene. The 192 macrocyclic and nitroaromatic musks are of strong, 
medium, weak, or unspecified odor intensity, whereas the 139 nonmusks 
are odorless or have an odor other than musk. We deliberately chose the 
nonmusks to be as similar in structure to the musks as possible. This not 
only adds the extra challenge of separating very similar structures on the 
basis of odor quality, but also increases our understanding of how small 
structural changes can affect odor character. Further details about this data 
set can be found elsewhere [30]. 

Each compound in the data set was characterized by a set of computer 
generated molecular descriptors. The present work emphasizes the use of 
electron density derived descriptors of three general types: TAE or 
molecular surface property descriptors, surface property wavelet 
coefficient descriptors (WCD), and PEST surface property hybrid 
descriptors. This methodology takes advantage of a new, rapid, charge 
density reconstruction algorithm that employs atomic charge density 
fragments that have been pre-computed using ab initio wave functions. A 
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library of atomic charge density components is used to construct molecular 
electronic densities in a form that allows for rapid retrieval of the 
molecular surface properties needed to generate descriptors. For each 
calculated molecule, the program reads in molecular structure information, 
and then reconstructs the electronic properties of the molecular surface 
from the atomic fragments. The distributions of several electronic 
properties on molecular surfaces may then be quantified to give a large 
variety of numerical descriptors. The CPU and disk resources required for 
these calculations are minimal. 

The underlying methodology relies on the hypothesis that a causative 
relationship exists between observed odor properties and the distribution 
of certain molecular electronic properties as sampled on molecular van der 
Waals surfaces. An additional hypothesis for PEST shape/property hybrid 
descriptor validation is that spatial arrangements of surface electronic 
properties contain pertinent chemical information. Both of these 
hypotheses have been previously validated [31] in studies involving 
biological and nonbiological molecular behavior. 

Musks Nonmusk 

CH 3 

CH 3 

Musk 

CH 3 

H3C~-C~~CH3 

CH 3 

Nonmusk 

Figure 1. Two strong musks and two nonmusks representing the major 
structural classes of compounds found in the data set. (Reproducedfrom 

Reference 30. Copyright 2003 American Chemical Society.) 
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Pattern Recognition Analysis 

For pattern recognition analysis, each compound was initially 
represented by 896 computer generated molecular descriptors derived 
from connection tables or from three dimensional models of the 
compounds. The connection tables and the three dimensional models of 
the compounds were generated by the modeling program Quanta 
(Molecular Simulations), which contained a molecular mechanics model 
building routine that utilized the CHARMN force field. Traditional 
molecular property descriptors, including connectivity based topological 
2D descriptors and physiochemical property descriptors were computed 
via the MOE Program (Chemical Computing Group, Montreal, Canada) 
and were included in the study. TAE molecular surface property 
reconstructions were generated using Convert2001 [32]. The Property 
Encoded Surface Translator (PEST) algorithm [33] was used to generate 
wavelet and hybrid shape/property descriptors. Molecular electron density 
properties for all compounds in the study were represented by TAE surface 
histogram descriptors, wavelet coefficient descriptors, and hybrid 
shape/property descriptors. 

Before any given descriptor was entered into the study, it was checked 
to see whether it had the same value for all compounds in the training set. 
A descriptor would be eliminated from consideration if it was invariant. 
Prior to pattern recognition analysis, each descriptor was autoscaled to 
zero mean and unit standard deviation to alleviate any problems arising 
from scaling and facilitate the identification of informative descriptors. 

The premise underlying the approach to pattern recognition used in 
the present study is that all data analysis methods will work well when the 
problem is simple. By identifying the appropriate features, a "hard" 
problem can be reduced to a "simple" one. Therefore, our goal is feature 
selection. To ensure identification of all relevant descriptors, it is best that 
a multivariate approach to feature selection be employed. The approach 
should also take into account the existence of redundancies in the data. 

A genetic algorithm (GA) for pattern recognition analysis was used to 
identify molecular descriptors from which discriminating relationships 
could be found. The pattern recognition GA selects descriptors that 
optimize the separation of the classes in a plot of the two or three largest 
principal components of the data. The principal component analysis 
routine embedded in the fitness function of the GA acts as an information 
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filter, significantly reducing the size of the search space, since it restricts 
the search to features whose principal component plots show clustering on 
the basis of class. In addition, the algorithm focuses on those classes and 
or samples that are difficult to classify as it trains using a form of boosting 
to modify the class and sample weights. Samples that consistently classify 
correctly are not as heavily weighted as those samples that are difficult to 
classify. Over time, the algorithm learns its optimal parameters in a 
manner similar to a neural network. 

To facilitate the tracking and scoring of the principal component plots, 
class and sample weights, which are an integral part of the fitness function, 
are computed (see equations 1 and 2) where CW(c) is the weight of class c 
(with c varying from 1 to the total number of classes in the data set). 
SWc(s) is the weight of sample s in class c. The class weights sum to 100, 
and the sample weights for the objects comprising a particular class sum to 
a value equal to the class weight of the class in question. 

CW(c) = 100-5 W ( c ) (1) 
£ C W ( c ) 

c 

SWfa) = CW(c) JjW(,y)
 (2) 

£ s w ( * ) 

The principal component plot generated for each feature subset after it 
has been extracted from its chromosome is scored using the K-nearest 
neighbor classification algorithm [34]. For a given data point, Euclidean 
distances are computed between it and every other point in the principal 
component plot. These distances are arranged from the smallest to largest. 
A poll is then taken of the point's nearest neighbors. For the most 
rigorous classification, K c equals the number of samples in the class to 
which the point belongs. (K<. often has a different value for each class.) 
The number of K c nearest neighbors with the same class label as the 
sample point in question, the so-called sample hit count, SHC(s), is 
computed (0 < SHC(s) < Kc) for each sample. It is then a simple matter to 
score a principal component plot (see equation 3). First, the contribution 
of each compound in class 1 to the overall fitness function is computed, 
with the scores of all the compounds comprising the class summed to yield 
the contribution by this class to the overall fitness. This same calculation 
is repeated for the other class with the scores from each class summed to 
yield the overall fitness, F (d). 
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To understand scoring, consider a data set with two classes, which 
have been assigned equal weights. Class 1 has 10 compounds, and class 2 
has 20 compounds. For uniformly distributed sample weights, class 1 
compounds will have a weight of 5 and class 2 compounds will have a 
weight of 2.5, since each class has a weight of 50 and the sample weights 
in each class are uniformly distributed. Suppose a compound in class 1 
has, as its nearest neighbors, 7 class 1 compounds in a principal 
component plot developed from a particular feature subset. Hence, 
SHC(c)/Kc = 7/10, and the contribution of this compound to the fitness 
function for the particular feature subset equals 0.7*5 or 3.5. Multiplying 
SHC/KC by SW(s) for each compound and summing up the corresponding 
product for the 30 compounds in the data set yields the value of the fitness 
function for this particular set of features. 
The fitness function of the pattern recognition GA is able to focus on 
individual compounds and classes of compounds that are difficult to 
classify by boosting their weights over successive generations. In order to 
boost, it is necessary to compute both the sample-hit rate (SHR), which is 
the mean value of SHC/KC over all feature subsets produced in a particular 
generation (see equation 4), and the class-hit rate (CHR), which is the 
mean sample hit rate of all samples in a class (see equation 5). $ in 
equation 5 is the number of chromosomes in the population, and AVG in 
equation 6 refers to the average or mean value. During each generation, 
class and sample weights are adjusted by a perceptron (see equations 6 and 
7) with the momentum, P, set by the user, (g + 1 is the current generation, 
whereas g is the previous generation.) Classes with a lower class hit rate 
are more heavily boosted than those classes that score well. 

(4) 

CHRg(c) = ^FG(SHR g(s):VS 6 C) (5) 

CWg+1(s) = CWg(s) + P(l-CHR(s)) (6) 

S W g + I (s) = S Wg (s) + P(l-SHR g (s)) (7) 
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Boosting is crucial for the successful operation of the pattern recognition 
GA because it modifies the fitness landscape by adjusting the values of 
both the class and sample weights. This helps to minimize the problem of 
convergence to a local optimum. Hence, the fitness function of the GA 
changes as the population is evolving towards a solution. 

During each generation, selection, crossover, and mutation operators 
are applied to the chromosomes. Fit strings are retained and selected for 
breeding, a process called selection. The fit feature subsets are broken-up, 
swapped, and recombined, creating new feature subsets, which are 
introduced into the population of potential solutions. This process is called 
crossover. In this study, the selection and crossover operators are 
implemented by ordering the population of strings, i.e. potential solutions, 
from best to worst, while simultaneously generating a copy of the same 
population and randomizing the order of the strings in this copy with 
respect to their fitness. A fraction of the population is then selected as per 
the selection pressure which is usually set at 0.5. The top half of the 
ordered population is mated with strings from the top half of the random 
population, guaranteeing the best 50% are selected for reproduction, while 
every string in the randomized copy has a uniform chance of being 
selected. If we used a purely biased selection criterion to select strings, 
only a small region of the search space would be explored. Within a few 
generations, the population would consist of only copies of the best strings 
from the initial population. 

For each pair of strings selected for mating, two new strings are 
generated using three-point crossover In the last step of reproduction, a 
mutation operator is applied to the new strings. The mutation probability 
of the operator is usually set at 0.01, so 1% of the feature subsets are 
selected at random for mutation. A chromosome marked for mutation has a 
single random bit flipped, which allows the GA to explore other regions of 
the parameter space. If the GA finds a better solution, the genes from this 
point can invade the population, with the optimization continuing in a new 
direction. 

The resulting population of strings, both parents and children, are sorted 
by fitness, and the top <|> strings are retained for the next generation. 

Because the selection criterion used for reproduction exhibits bias for the 
higher-ranking strings, the new population is expected to perform better on 

average than its predecessor. The reproductive operators, however, also 
assure a significant degree of diversity in the population, since the 

crossover points and reordering of exchanged string fragments of each 
chromosome pair is selected at random. The aforementioned procedure, 

which involves evaluation, reproduction, and boosting of potential 
solutions, is repeated until a specified number of generations are executed 
or a feasible solution is found. A block diagram of the genetic algorithm 
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Figure 2. Block diagram of the genetic algorithm developedfor pattern 
recognition analysis. 

(GA) developed for pattern recognition is shown in Figure 2. Boosting is 
denoted by the block entitled, "adjusting internal parameters," in the figure. 

Results and Discussion 

The first step in the study was to apply principal component analysis 
(PCA) to the training set data. PCA is the most widely used multivariate 
analysis technique in science and engineering. It is a method for 
transforming the original measurement variables (i.e., the molecular 
descriptors) into new uncorrected variables called principal components. 
Each principal component is a linear combination of the original 
measurement variables. Using this procedure, a new coordinate system is 
developed that is better at conveying the information present in the data 
than axes defined by the original measurement variables. This new 
coordinate system is linked to variance. Often, only two or three principal 
components are necessary to explain all of the information present in the 
data if there are a large number of interrelated measurement variables. 
Hence, principal component analysis is often applied to multivariate data 
for dimensionality reduction, in order to identify outliers, display structure, 
and classify samples. 

Figure 3 shows the results of a principal component mapping 
experiment for the 331 training set compounds and the 871 TAE and MOE 
derived descriptors. The macrocyclic nonmusks are denoted by the 
symbol 1, the aromatic nitro nonmusks are denoted by the symbol 2, 
macrocyclic musks are denoted by the symbol 3, and the aromatic nitro 
musks are denoted by the symbol 4. The two largest principal components 
of the data explain 35% of the total cumulative variance of the data. From 
the plot it is evident that most of the information captured by the two 
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largest principal components is about chemical structure since the 
macrocycles are well separated from the nitro aromatics on the first 
principal component. 

We used the pattern recognition GA to identify a subset of the 871 
descriptors from which a discriminating relationship could be developed 
for the macrocyclic and nitroaromatic musks. These molecular descriptors 
were identified by sampling key descriptor subsets, scoring their principal 
component plots, and tracking those compounds that were difficult to 
classify. After 100 generations, the pattern recognition GA identified 16 
TAE derived descriptors whose principal component plot (see Figure 4) 
showed clustering of the compounds on the basis of odor quality. The 
principal component plot explains 57% of the total cumulative variance of 
the data. Because the musks are well separated from the nonmusks on the 
first principal component, one can conclude that musk odor activity can be 
accurately modeled by TAE derived descriptors. Furthermore, TAE 
derived descriptors can span structural manifolds. 

The 16 molecular descriptors identified identified by the pattern 
recognition GA are listed in Table 1. Most of the 16 descriptors identified 
by the pattern recognition GA convey information about intermolecular 
interactions which suggests their importance in defining musk odor quality. 
DGNH8, DGNW7, and DGNW21 are correlated to weak bonding 
interactions and probably describe some facet of the interaction between 
the musk and the receptor. DGNB52, a shape descriptor, can be 
interpreted to mean that it is probably crucial for areas with a low rate of 
change in the G kinetic energy to be relatively far apart in the molecule. 
LAPLB30, another shape descriptor, is important in characterizing 
donor/acceptor relationships. 

DKNMAX is correlated to hydrophobicity and polarizability. 
DKNW6 is a wavelet descriptor emphasizing the same properties encoded 
in DKNMAX, whereas DKNB55 is a shape descriptor developed from the 
rate of change of the K kinetic energy density. Evidently, long distances 
between relatively high values of the rate of change in the K kinetic energy 
density is crucial for musk odor quality. Both DRNH6 and DRNW26 are 
highly correlated to the four DG descriptors discussed previously. PIPH8, 
PIPW18, and PIPW29 are descriptors that convey information about the 
local ionization potential of the molecule. BNPW4 and BNPW9 are so-
called bare nuclear potential descriptors, which probably describe 
interactions involving polar and hydrogen bonding. ANGLEB52 is a 
special type of shape descriptor. Molecules that are curved and do not 
have sharp turns are favored by this descriptor. 

Figure 4 shows that nitrated and nitro-free musks have common 
structural features that can be used to differentiate them from nonmusks. 
This is a significant result. Fragrance chemists have long sought to 
discover the overlap between nitrated and nitro free musks in terms of the 
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Table 1. Descriptors Selected by the Pattern Recognition GA 

DGNH8 Rate of change of the G kinetic energy density normal to and 
away from the surface. The "H" defines this descriptor as a 
histogram descriptor and the "8" means that its value is from 
the 8th bin. Evidently, large values of DGN are important for 
musk odor quality. 

DGNW7 Scale wavelet descriptor ("W") describing the same basic value 
type as DGNH8. 

DGNW21 Detail coefficient wavelet descriptor ("W") describing the same 
basic value type as DGNH8. 

DGNB52 Shape descriptor. The "5" indicates that long rays are 
important and the "2" indicates that low DGN values are 
important. 

LAPLB30 The Laplacian is the second derivative of the electronic energy 
distribution. It is a shape descriptor with "3" meaning that 
intermediate length rays are represented, and "0" meaning that 
small property values are represented. 

DKNMAX Maximum value of DKN. It is similar to DGNMAX except 
that it uses K kinetic energy density, which is often 
complementary to the G kinetic energy density. 

DKNW6 Scale wavelet descriptor emphasizing the importance of 
changes in the K kinetic energy. 

DKNB55 Shape descriptor representing relatively long rays between 
relatively high values of DKN. 

DRNH6 This descriptor represents the rate of fall off of the electron 
density. The "H" defines this descriptor as a histogram 
descriptor and the "6" means that its value is from the 6th bin. 
This type of descriptor is often highly correlated to DGN. 

DRNW26 A detail wavelet descriptor for DRN. 
PIPH8 PIP is the local average ionization potential. The "8" represents 

a bin containing lower than average values for PIP. 
PIPW18 Detail coefficient wavelet descriptor for PIP 
PIPW29 Detail coefficient wavelet descriptor for PIP 
BNPW4 Scale coefficient wavelet descriptor of the bare nuclear 

potential. It is suspected of describing polar and hydrogen 
bonding interactions. 

BNPW9 Scale coefficient wavelet descriptor of the bare nuclear 
potential. It is suspected of describing polar and hydrogen 
bonding interactions. 

ANGLEB52 Special shape descriptor. For long rays (5), the angle (2) is less 
than average. 
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structural features that a compound must possess in order to evoke a 
musky odor. According to the most recent theory of olfaction, compounds 
interact with multiple olfactory receptors rather than individual ones. 
Because the olfactory receptors are not very selective towards specific 
odorants, identification of an odor is based on a distinct pattern of 
responses. It is, therefore, plausible that nitro musks such as "musk 
ketone" and "musk ambrette" long used in the fragrance industry because 
of their fixatives properties generate a response pattern, which in some 
measure overlaps with the response pattern generated by nitro-free musks. 
This viewpoint would be consistent with the SAR results obtained in this 
study and would also validate a viewpoint long held by perfumers that 
nitrated musks fit better in the musk odor category than in any other odor 
category even though nitrated musks elicit an odor response that is 
markedly different from nitro free musks. 

The SAR of aromatic nitro musks is not well understood because of the 
complex substitution pattern and the varied polyfiinctional character of the 
nitro group. Aromatic nitro musks have highly impure and informationally 
complex odors. Nevertheless, aromatic nitro musks could be separated 
from nonmusks by a single principal component developed from 16 TAE 
derived descriptors. Clearly, the musk odor activity of aromatic nitro 
musks can be accurately modeled by TAE derived descriptors. In our 
opinion, this constitutes an important step forward in the study of olfactory 
relationships since it has been demonstrated via macrocylic and aromatic 
nitro musks that TAE derived descriptors convey significant information 
about molecular interactions that are important in olfaction. 
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Chapter 10 

Optimization of MDL Substructure Search Keys 
for the Prediction of Activity and Toxicity 

Douglas R. Henry and Joseph L. Durant, Jr. 

MDL, 14600 Catalina Street, San Leandro, CA 94577 

This article describes the algorithmic generation of MDL 
substructure search keys and the optimization of the key 
definitions and weightings for predicting the biological activity 
of chemical structures. Substructure search keys are bitsets 
representing functional groups and atom pairs in molecules. 
They are mainly used for molecular similarity calculations, but 
they are also useful for clustering and classification analysis. 
We applied genetic algorithms to generate keysets that could 
better predict activity in a set of structures first used by Briem 
and Lessel (Briem, H. and Lessel, U., Perspect. Drug Discov. 
Design, 2000, 20, 231-244). Prediction performance 
improved from 65% to 74% correctly classified using a 324-
keyset. We then applied a variety of weighting schemes in 
similarity calculations to discriminate between drug structures 
from the MDL Drug Data Report (MDDR) database and toxic 
structures from the MDL Toxicity database. The best results 
were obtained when the keys were weighted according to the 
inverse of database frequency (79% correct), followed by 
surprisal and unit weighting. Using coefficients from principal 
component and discriminant analyses did not yield better 
results. 
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In the field of drug discovery perhaps the most common pursuit is 
attempting to predict the biological activity of a molecule from its chemical 
structure. We have not yet reached the point where structures per se, can be 
used as "data" although virtual screening and docking approach this goal. It is 
still customary to convert structures to some numerical quantities (descriptors) 
and by the "similar property principle" we expect compounds that are similar 
structurally to have similar descriptor values and to some degree, similar 
chemical and biological properties (1). The numbers and types of descriptors 
used to encode chemical structure information are huge. One descriptor 
calculation program, DRAGON, can compute nearly a thousand descriptors (2). 
Although there are many ways to organize and classify such descriptors, a major 
distinction exists between descriptors that attempt to encode molecular 
properties, often sensitive to 3D shape or conformation (e.g., molecular shape, 
Log P, polar surface area), and descriptors that encode purely structural 
information, typically based on the 2D connection table of the structure (e.g., 
substituent constants and fragment or substructure keys). The "dimensionality" 
of chemical property space is finite and limited. For example, in the field of 
quantitative structure-activity relationships (QSAR) it is common to speak of 
steric, electronic, and lipophilic properties as being the most important for drug 
binding and activity. As a consequence, we often find a high degree of 
correlation among the multitude of chemical property descriptors. The 
dimensionality of chemical structure space is much greater, although as Bemis 
and co-workers have shown, for drug structures at least, it is still somewhat 
limited (3, 4). Accordingly, we would expect a larger number of descriptors to 
be required to adequately cover chemical structure space. 

A common type of structure-based topological descriptor is the substructure 
or fragment bitset, sometimes referred to as substructure "keys" or 
"fingerprints". In this type of binary descriptor a set of bits - usually hundreds 
or thousands of bits long - encode the presence of specific functional groups or 
atom/bond combinations in a structure. With the introduction of chemical 
structure databases and substructure searching in the early 1980's, substructure 
keys were originally used as filters to aid the search process. Thus, if a query 
substructure has a carbonyl group, every structure containing that substructure 
must also have a carbonyl group. A particular bit in a set of substructure keys 
can be checked using fast binary logic to filter out structures in the database that 
lack the required functionality. As chemical database systems moved to more 
sophisticated tree-based indexing of structures, substructure keys were no longer 
needed for substructure searching (5). 

A new use for substructure keys emerged in the 1990's with the emphasis on 
combinatorial chemistry, library design, and chemical diversity. A simple and 
chemically intuitive measure of the similarity between two structures can be 
obtained using one of several binary similarity coefficients (6). The most 
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common of these is the Tanimoto coefficient, which is the defined as the number 
of bits set in common between two structures, divided by the total number of bits 
set between them (i.e., the intersection divided by the union of the two sets of 
bits). This coefficient ranges in value from 0 for no similarity to 1.0 for perfect 
overlap: 

bits _ in _ commonab ( 1 . 

]£] bits _ seta + bits _ setb - ]£] bits _ in _ commonab 

The Tanimoto coefficient computes similarity considering only the presence 
of features, not their absence. In addition, it typically weights all features 
equally. In a database of structures, a common feature like a phenyl ring, may 
not differentiate structures as well as a less common feature like a cyclopropyl 
group. For this reason, MDL database programs such as ISIS™ commonly 
compute a weighted Tanimoto similarity coefficient: 

bits _ in _ commonab • weightsab (2) 

]jT bits _ seta • weightsa + £ bits setb • weightsb - bits _ in _ commonab • weightsab 

For any given key, the weight is usually calculated to be inversely proportional 
to the frequency of occurrence of the feature in the database. It is possible to 
recalculate weights from the database automatically or to assign weights 
manually. The values of a weight typically range from 0 to 100. 

Several groups have studied the use of MDL keys in the past, mainly as they 
relate to molecular diversity. Brown and Martin (7) and McGregor and Pallai 
(8) studied clustering and diversity. Combinatorial library generation and 
evaluation was studied by Brown and Martin (9), Koehler et. al. (10), and Ajay 
et. al. (11). Information content and structure comparison was the focus of 
articles by Brown and Martin (12), Jamois et. al. (13), and Briem and Lessel 
(14). 

Defining MDL Keys 

Two main approaches to the design of substructure search and similarity 
keys are found in commercial chemical databases. In one approach, offered by 
Daylight Chemical Information Systems, the functional groups are "discovered" 
algorithmically in the database by computing all paths in the molecules of the 
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database up to a given bond distance, and assigning each unique path to a key in 
the bitset. This can yield large numbers of sparsely-populated keys, so typically 
the keys are "folded" to increase the density of the bits that are set. This means 
the bit string is split in half, and the second half is logically OR'ed with the first 
half. This process is repeated until the required density of bits is achieved. 
Efficiency of the keys is optimal when about half of the bits are set on average, 
per structure. An alternative approach, followed by MDL and other software 
vendors, is to define a fixed number of keys, using specific structural features for 
each key. In MDL databases, two keysets have been available for molecules (as 
opposed to reactions and 3D models, which have their own keysets). These are 
the 960-key SSKEYS set and the 166-key USERKEY set. Each molecule that 
gets registered into an ISIS database has the keys calculated as part of the 
registration process, and stored in the database for similarity searching purposes. 
Keys in the 960-keyset are defined in a table or file known as the ENKFIL. 
Figure 1 shows an example of one line in the ENKFIL, along with the 
interpretation of the various entries in the line, and a graphical representation of 
a substructure corresponding to the given key. The 960-keyset encodes 1387 
possible atom-bond combinations (substructures), with additional keys for 
multiple occurrences. The keys are "confounded" such that a given substructure 
can set up to three keys, and a given key may be set by multiple, different 
substructures (typically ones that are orthogonal in the database - they would not 
usually occur together in a given structure). 

A.n. 
"A' A 

I 
Q 

"2352 31 479 469 763" 

(2) 2-bond distance between atoms with: 
(3) - a multiple, non-aromatic bond 
(5) - at least two heteroatom neighbors 

(2) 2 or more occurrences of the substructure 

(3) the descriptor sets 3 keybits 

(1) these keybits can be set by other descriptors 

(479...) the keybits set are 479, 469, and 763 

Figure I. Typical entry in the ENKFIL table to define a substructure key. The 
substructure corresponding to the given key is shown (A -any atom type, 

Q=hetero atom type, and dot-dash bond=any bond type). 
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The 166-key subset was originally developed to encode common 
substructural features found in organic molecules. For this reason, this keyset is 
typically used for filtering in structure searches or it is the set most often used in 
diversity and biological activity prediction studies. The substructures are more 
intuitive than many of those present in the 960-keyset. Table I shows the first 24 
of the 166-keyset definitions. Each key in the 166-keyset maps to one of the 960 
keys as well, though not in any particular order. A complete description of the 
definition of the MDL keys is found in Durant et. al. (15). 

Table I. Key definitions for the first 24 keys in the MDL 166-keyset. 

Key Definition 960-key Equivalent 
1 ISOTOPE 1 
2 103 < ATOMIC NO. < 256 2 
3 GROUP IVA.VA.VIA PERIODS 4-6 (GE..) 29 
4 ACTINIDE 4 
5 GROUP IIIB.IVB (SC..) 6 
6 LANTHANIDE 7 
7 GROUP VB.VIB.VIIB (V..) 8 
8 QAAA@1 9 
9 GROUP VIII (FE..) 10 
10 GROUP HA (ALKALINE EARTH) 12 
11 4M RING 14 
12 GROUP IB.IIB (CU..) 15 
13 ON(C)C 16 
14 S-S 17 
15 OC(0)0 18 
16 QAA@1 19 
17 CTC 22 
18 GROUP IIIA (B..) 23 
19 7M RING 27 
20 SI 28 
21 C=C(Q)Q 30 
22 3M RING 32 
23 NC(0)0 42 
24 N-0 46 
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Constructing "Better" Keysets 

The 960 and 166-keysets have been used in MDL databases for many years 
without any changes. They were originally designed to filter structures and to 
aid substructure searching. It is rather remarkable that they would also be found 
useful for the purpose of predicting biological activity. It was natural to ask 
whether improved biological prediction could be obtained by modifying the 
keys, either by redefining them, or by adjusting their weights. Accordingly, we 
did experiments to try to optimize 1) the key definitions, 2) the total number of 
keys, and 3) the key weights. The first step was to pick an objective criterion to 
measure the effectiveness of the keys for predicting biological activity. Briem 
and Lessel (14) studied a set of 383 compounds with known activity, plus a set 
of 574 compounds of "random" activity, all selected from the MDL Drug Data 
Report database (MDDR) (16). They computed the similarity of each structure 
to all the others, using a variety of fingerprint descriptors, including MDL keys. 
For each structure, they examined the ten most similar neighbors and computed 
the fraction of those that had the same activity class as the given structure. The 
average percentage "correct" by this calculation was used as a measure of the 
effectiveness of the given type of descriptor for predicting biological activity. 

To study changes in the definition and selection of keys we adopted the 
Briem and Lessel success measure, with an added correction in the case of ties 
(15). A total of five sets of keys were generated and examined: 

1. The standard MDL 960-keyset. 
2. The standard MDL 166-keyset. 
3. A 726-keyset obtained by removing multiply-mapped keys from the 

960-keyset (i.e., removing keys that mapped to several substructures). 
4. A 1387-keyset obtained by generating singly-encoded keys from the 

multiply-mapped keys for the 960-keyset (i.e., if several substructures 
mapped to a given key, they were now mapped each to a separate key). 

5. A 3234-keyset obtained by encoding every possible combination of the 
atom and bond/path properties used in the 960-keyset. 

The first question we asked was "How many keys are really needed to 
adequately predict activity?" To answer this, we started with the 3234-keyset, 
and pruned the set by random deletion of keys. It was found that a success rate 
of about 67% correct prediction could be maintained regardless of the selection 
of keys, until about 600 keys remained in the set. Below that point, 
classification results fell off quickly. This implies that there is a base amount of 
chemical structure information in the Briem structure set that must be 
represented, and many combinations of keys can represent this base information. 
The value of 600 keys is likely related to the number and diversity of structures 
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in the data set. Including extra keys beyond this base amount did not improve 
the classification rate, and since the keys were included/excluded at random, they 
did not reduce the classification rate adversely or in a systematic manner. 

It is possible that after achieving a certain rate of success, one could select 
additional keys that would actually reduce the overall success rate, by focusing 
on irrelevant structural similarities in different classes. We did not observe this 
in the random subset selection process, but we did see it when using another 
criterion for pruning the keys, the surprisal. The surprisal of a descriptor, a form 
of log likelihood ratio, is simply the negative log of the ratio of the frequency of 
occurrence of a given key in one activity class, divided by the frequency of 
occurrence in all the other classes (Figure 2). The surprisal significance is the 
surprisal divided by it's signal to noise ratio - a form of "T" statistic. As such, it 
can be used as a basis for selecting significant decriptors. 

# Surprisal = - log (Pi / P2) 
° probability 1 = "active" molecules 
° probability 2 = "inactive" molecules 

* Assume Poisson-distributed errors 
* "Surprisal Significance" = 

abs (Surprisal / (S/Nsurprisai)) 

# S/Nsurpr lSaf = (1/Na +1/Nb)1/2 

Figure 2. Definition of surprisal and surprisal significance used in this work. Pj 
is the frequency of occurrence of a key in the combined active structures (for the 
Briem data, the five activity classes), while P2 is the frequency of occurrence in 
the test set of547 "random " structures. Nj and N2 are the key bitfrequencies in 
the active and inactive classes, and S/N is the signal to noise ratio, assuming a 

Poisson distribution. 

Using a high value of surprisal significance as a criterion for selecting keys, 
key subsets that were selected tended to be smaller and more efficient at 
predicting active structures, than the subsets obtained using random pruning. 
The best subsets contained about 200 keys, and showed an average prediction 
rate of about 71%, which is near the maximum reported by Brien and Lessel. 
We also examined genetic algorithms (GA) as an optimization strategy. Keyset 
sizes ranging from 200 to about 1600 keys were generated. The success rates 
ranged from 50% to 71% correct. None of the GA-generated subsets 
outperformed the best surprisal significance-pruned subsets. 
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The next question we examined was whether we could manually develop a 
keyset that would perform as well or better than the random, surprisal 
significance, and GA-pruned subsets. We took guidance form the surprisal 
significance pruning, the GA optimization, and the 166-keysets, along with 
information from publications by Bemis and Murcko that identified and 
classified the scaffolds and side chains found in known drug structures (3, 4). 
We also gave preference to the generation of series descriptors in which the 
counts of occurrence of atom-bond combinations varied sequentially (i.e, 
separate keys for 1, 2-or-more, 3-or-more, etc.) and where the bond distances in 
the descriptors varied sequentially (i.e., 2, 4, 6 bonds). This process eventually 
yielded a 324-keyset that performed as well as the best of the previously selected 
sets, and achieved a performance about equal to the best descriptors in the Briem 
paper (Figure 3). The definitions of these keys, in the form of an MDL ENKFIL 
file, are available from the authors. 

t 

Effects of Various Key Weighting Schemes 

Recently there has been much interest in the prediction of ADMET 
properties of drugs (Absorption, Distribution, Metabolism, Excretion, and 
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Toxicity). This arises because many compounds that show strong binding to a 
receptor and high in vitro potency may fail as drugs, because of undesirable 
ADMET or pharmacokinetic properties. In our experience, attempts to use 
MDL keys as a basis for predicting quantitative properties such as Log P have 
not been successful, when decision tree and regression trees have been used 
(unpublished work). An alternative approach is to attempt to distinguish drug 
molecules from "toxic" structures using similarity-based methods. 

In particular, we wanted to determine whether modifying the weights of the 
166, 960, and 324-keysets in similarity calculations would improve their ability 
to distinguish druglike structures in the MDDR database from toxic structures in 
the MDL Toxicity database (17). The MDDR database we used contained 
141012 unique structures (salt moieties were removed for the key calculations). 
The Toxicity database had 110138 structures. Only 1950 structures were present 
in both databases, and these were removed from the analysis. To measure 
success at predicting drug-likeness, we did the following: 

• We selected 100 structures randomly from the combined databases (a 
subset of 55 MDDR structures and 45 Toxicity structures). 

• Using each structure in turn as a query, we ran a similarity search, 
retaining all the structures with at least 50% similarity to the query 
structure. The weighted similarity calculations were run using the given 
keyset and weighting scheme. The searches retrieved a few hundred to 
a few thousand structures in each case. 

• The percentage of structures in the result set coming from MDDR and 
the percent coming from Toxicity were recorded as measures of 
success. 

We applied several different weighting schemes to determine the effect of 
weighting on the predictions. These included: 

• Unit weighting (i.e., setting all the weights to 50). 
• Weighting by 1/(Frequency of occurrence in the MDDR structures). 
• Weighting by the absolute value of the MDDR/Toxicity surprisal value. 

Figure 5 shows the effect of the various weighting schemes on the 166, 960, and 
324-keysets. Weighting did not have a large effect on the classification results, 
but it is clear that the 324-keyset is superior to the others in being able to 
distinguish drug structures from toxic ones. Besides the accuracy of the 
prediction, another concern is the efficiency or selectivity of prediction - i.e., 
how large a result set does it take to get all the structures that are, say 50% 
similar to the query structure. Figure 6 shows the average result set sizes for the 
various weighting schemes and keysets. 
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Figure 5. The effect of various weighting schemes and keysets on the prediction 
of "drug-likeness ". 

Figure 6. The effect of various weighting schemes on the hitlist size for the 
various keysets. 
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Figure 6 shows the average result set sizes for the various weighting schemes 
and keysets. The 324-keyset is significantly different from the other keysets, 
depending on the weighting that was used. In general, the 324-keyset retrieved a 
smaller number of structures for a given level of similarity. In practice, this 
would mean fewer structures to examine manually when the selection of a few 
specific structures is required. 

Conclusions 

In an extension of previous work, we have shown that substructure keysets 
can be optimized for predicting activity and for distinguishing drug-like from 
toxic structures. We examined the effects of keyset size and definition on 
predicting activity in a previously published data set. By redefining and 
selecting descriptors we were able to improve classification performance from 
65% to 71% using a 324 keyset. In this work, the best criterion for pruning the 
keysets was found to be the surprisal significance, calculated as the ratio of the 
surprisal to its S/N value. We examined the effect of various weighting schemes 
in weighted similarity calculations to distinguish drug-like from toxic structures. 
The most effective weighting was observed using weights inversely proportional 
to the database frequency, followed by surprisal weighting. These weights 
yielded classification rates of nearly 80% correct. So, it is clearly possible to 
improve the performance of existing MDL keysets by redefining and reweighting 
them. The results shown here are likely very specific to the sets of structures and 
activities that were studied. The fact that the 324-keyset consistently performed 
better than any of the other keysets implies that this set may be more generally 
useful for drug discovery purposes. 
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Chapter 11 

Clustering Compound Data: Asymmetric Clustering 
of Chemical Datasets 

Norah E . MacCuish and John D. MacCuish 

Mesa Analytics and Computing, LLC, Santa Fe, NM 87501 

We investigate asymmetric clustering of compound data as a 
viable alternative to more commonly used algorithms in this 
area such as Wards, complete link, and leader algorithms. 
We show that the Tversky measure, more commonly applied 
to similarity searching in compound databases, can be used in 
both a hierarchical asymmetric clustering algorithm and an 
asymmetric variant of a popular leader algorithm as effective 
means to cluster 2-dimensional molecular structures for 
template extraction, without the size bias usually associated 
with more common clustering measures and methods. We 
show the results of the combination of these measures and 
algorithms with several chemical datasets. 

© 2005 American Chemical Society 157 
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Introduction 

Cluster analysis is the study of the methods to find groups or some form of 
structure in data (1,2). These methods fell under the general heading of 
unsupervised learning. Clustering is sometimes called classification, though it 
is distinct from the methods, also known as classification, employed to 
discriminate groups that are known to be in the data a priori. Discrimination 
methods (3) are often used to build classification models (classifiers) for 
predictive modeling. The latter form of classification falls under the general 
rubric of supervised learning. All of these methods are within the larger study 
of pattern recognition (4) and multivariate statistics (5). 

Clustering algorithms in turn have a complex taxonomy that is not well 
defined. The most general types are hierarchical (divisive and agglomerative) 
and partitional algorithms. A partition can be formed from a hierarchy via a 
level selection technique (6) such as the Davies-Bouldin (7) or the Kelley (8) 
heuristics. Common agglomerative hierarchical algorithms are Wards, 
complete link, and group average. A popular partitional or relocation method 
is k-mems (9). Exclusion region algorithms such as Tayior-Butina (10,11) are 
also often used for grouping molecular structures. 

The algorithms can also be divided up into forms that strictly partition the 
data into disjoint sets, or where cluster membership is not unique such that the 
sets are non-disjoint (or overlapping). Membership can also be probabilistic, 
where elements are assigned a probability of membership for each cluster. 
Fuzzy clustering (12) is an overlapping method, where membership is assigned 
as a grade (often between 0 and 1, but not a probability). There are also 
parametric methods such as mixture models. EM or Expectation Maximization 
is one such algorithm (13). However, these methods, with their assumption of 
specific distributions, tend to work best with low dimensions and they are 
computationally expensive. 

Clustering in chemoinformatics is used for lead selection in HTS data, 
diversity analysis, lead hopping, compound acquisition decisions and related 
activities (14,15), often on large or very large data sets. Numerous clustering 
techniques have been employed with varying effectiveness in these pursuits 
(16). Algorithms must be effective in minimizing computational resources, and 
that the algorithm can be parallelized is often crucial with very large data sets. 

Clustering compound data begins first with molecular descriptors. Such 
descriptors are manifold: graph-based (17), chemical properties (18), shape 
descriptors (19). With large data sets the speed with which to operate on 
molecular descriptors becomes crucial. Thus, simple binary fingerprints that 
encode 2D chemical structure, whether feature or path based (20,21), are very 
common as they are relatively easy to generate and operate on. Proximity 
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measures for binary data are then used to compare binary molecular descriptors 
(22,23). These have varying properties; such as they may or may not be metric, 
they may be symmetric or asymmetric, or they may or may not be monotonic to 
one another. Thus, binary descriptors are very common, and many of the 
clustering techniques revolve around binary proximity measures and algorithms 
that can utilize them. 

All of the various binary data clustering algorithms mentioned above 
typically use symmetric proximity measures such as the Tanimoto, Euclidean, 
or Ochiai measures. However, there are algorithms that can use asymmetric 
measures such as the Tversky measure (24,25,26). For example, there is an 
asymmetric, agglomerative, hierarchical, strongly connected component 
algorithm due to Tarjan (27), and we have transformed the Tayior-Butina 
algorithm mentioned above to work with asymmetric measures. Asymmetry 
can be used with other chemical descriptors. Examples are graph based 
descriptors (17) and shape descriptors (28). In addition, clusters from 
asymmetric algorithms need not be strictly disjoint. For instance, non-disjoint 
variants of hierarchical algorithms (29) have been designed, and we have 
created a variant of our asymmetric Taylor-Butina's algorithm to produce 
overlapping clusters. 

Special situations arise however when using binary measures and 
clustering algorithms (30,31,32,33). The relative sizes of molecular structures 
in conjunction with certain measures can create biases (31). In addition, ties in 
proximity often becomes a much more serious problem with the use of binary 
descriptors (32,33). Ties in proximity can effect either directly or indirectly 
decisions within clustering algorithms, such as merging criteria in 
agglomerative hierarchical algorithms, or partitioning decisions. Algorithms 
in turn may include fundamental or implementation decisions that result in an 
ambiguous clustering. 

We show how asymmetric methods are largely equivalent to the common 
and popular clustering methods in use in chemoinformatics. 

Motivation 

Anecdotal evidence from the chemical information industry suggests that 
the Tversky asymmetric measure is used with considerable efficacy in similarity 
searching ~ where, given one compound, a database is searched for similar 
compounds. It measures, via its parameterization of similarity, to what extent 
is a single molecular structure either super- or sub-similar to others. This gives 
rise to two possibly different proximities, hence the asymmetry. Similarity 
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searching uses one-to-many comparisons in one direction, whereas clustering 
typically uses many-to-many symmetric comparisons. 

Asymmetric clustering algorithms in other fields have not been tried to our 
knowledge in chemoinformatics. Our research suggests that using asymmetric 
measures and asymmetric clustering algorithms may yield important new 
methods that provide insight into template extraction or determining 
substructures in common. Our original interest in asymmetry was in the hopes 
that it would help avoid the serious shortcomings of ties in proximity when 
using binary measures and various clustering algorithms. This benefit is 
marginal at best, but does not obviate the other benefits of the use of 
asymmetry. More generally, asymmetric clustering algorithms can be used 
with non-binary descriptors as well, such as clustering shape descriptors or 
graph-based descriptors. 

Symmetric measures such at the Tanimoto and Euclidean measures of 
proximity are simply binary relations such that the proximity between two 
molecular structures is a single value. With asymmetric measures however, the 
proximity now has possibly two values. The proximity between structure A and 
structure B is not the same as the proximity of structure B and structure A. 

Tversky Measure 

The Tversky measure is a parameterization of the Tanimoto measure. The 
parameters allow one to treat the measures as asymmetric. The Tanimoto and 
Tversky measures are defined in Equation 1 and Equation 2 for comparisons of 
molecular structures represented by binary bit strings. 

Asymmetry 

Tanimoto = c / [a + b + c] (1) 

Tversky = c / [ aa + pb + c] (2) 

a = unique bits set in molecular structure A 
b = unique bits set in molecular structure B 
c = common bits set in structures A and B 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



161 

Optional constrain: 0<= a <=1, and P = 1 - a 

Given the optional constraint above, if a = 1, then the Tversky value will 
approach 1 as the number of unique bits set in molecular structure A tend to 0. 
So if A is a substructure of B in terms of the descriptor, with <x=l and p=0, 
then the Tversky measure is maximized to 1. The choice of a enables the 
Tversky value to determine how closely B contains A's structure given the 
descriptor. Tversky will give a different value when the question is asked in 
the opposite direction. When P = 1 the question becomes, does B fit into A? 
The unique bits of B will determine the Tversky result for the comparison. 
Strictly speaking, a and P can be set independently and outside of the 0 to 1 
interval. However, even with the optional constraint, shades of superimposition 
can be obtained by setting a and p between 0 and 1. Thus, the Tversky 
measure is an asymmetric measure as it provides two different values 
depending on the values of the parameters. 

Asymmetric Clustering Algorithms 

An algorithm due to Tarjan recursively calculates the strongly connected 
components of the directed graph formed by the asymmetry of the proximity 
measure used. This algorithm is computationally equivalent to computing the 
minimum spanning tree of a graph. Practical algorithms exist for this problem 
with bounds of 0(E log log V)9 where E is the number of edges in the graph 
and V is the number of vertices. If N is the number of structures this bound is 
0(N2 log log N). Generating the proximity matrix with a given threshold can 
decrease the number of edges substantially. 

We have created an asymmetric variant of the Tayior-Butina clustering 
algorithm. Though this algorithm is effectively 0(N2)9 we can generate a 
threshold matrix such that the algorithm can operate on a sparse matrix, 
improving both the space and time requirements. The asymmetric clustering 
algorithms is as follows: 

1. Create threshold graph. 
2. Find true singletons: all those compounds with both zero in and out 

degree. 
3. Find the structure with the largest in or out degree. This becomes a 

group and is excluded from subsequent consideration. (The structure 
is known as the representative structure.) 

4. Repeat 3 until no compounds exist with positive in or out degree. 
5. Optional: Assign remaining compounds, false singletons, to the group 

that contains the nearest neighbor in terms of either in or out degree. 
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In and out degree refers to the edges of the directed graph - in this case the 
edges formed by the Tversky asymmetry. 

A Simple Experiment 

Our task is to show that asymmetric algorithms are at least as effective as 
the commonly used algorithms. We therefore assembled a small simple set 
with three basic classes of compounds with some intermixing. The set contains 
HIV ligands with known antiviral activity, in three structural classifications, 
Azido Pyrmidines (NCI identification number labeled with a P), 
Benzodiazepines (labeled with a B), and Pyrimidine Nucleosides (labeled with 
a N). Binary Fingerprints of length 166 were generated with MDL keys. 

For comparison we used Wards, complete link, Tayior-Butina and two 
asymmetric algorithms, Tarjan's and an asymmetric version of Tayior-Butina. 
With Wards and complete link we use 1-Tanimoto, or the Soergel, dissimilarity 
measure, as ties in proximity are less likely to impact the resulting hierarchies 
over the use of the Euclidean measure. For the two asymmetric algorithms we 
used the Tversky measure. 

Results 

In Figure 1, we display the results for a complete link clustering of the 
dataset with a Tanimoto dissimilarity cutoff of 0.15. At this cut off, Figure 1 
displays the groupings found, in which nearly all compounds are clustered into 
one of the three classes in the dataset. At this cut off, seven groups noted by 
Roman numeral labels are found. In Figure 2, the results for Wards clustering 
with a merging criterion of 0.2, are displayed. The same structural classes are 
grouped together as well as the same seven groups (labeled by Roman 
Numerals) are found. In Figure 3, the results from the asymmetric hierarchical 
clustering algorithm of Tarjan are displayed. At Tversky dissimilarity of 0.09 
merging criteria, the Tarjan algorithm is able to also generate groupings that 
are delineated by the compound classes. The groups formed differ in one 
compound NCI number 635034 is moved from group V into group IV and an 
outlier NCI number 620753 is included in group V. (Note, in groups I, II, and 
HI, there are three compounds merged at the same level. This is an artifact of 
the strongly connected component merging criterion rather than each triple 
having the same similarity to one another when merged. The merging level is 
determined by the last similarity value that completes the strongly connected 
component.) 
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In Table I, the results for symmetric Tayior-Butina at a similarity threshold 
cut off of 0.85 are given and in Table II the asymmetric Tayior-Butina 
clustering results are displayed for an a = 0.1, P = 0.9 and a Tversky similarity 
threshold of 0.91. In the case of the symmetric grouping algorithm, groups I, 
II, the Benzodiazepines are the same as in Figure 1 for the complete link results, 
and the group III Azido Pyrimidines are also pulled out of the set by this 
symmetric algorithm. The Group IV and V Pyrimidine Nucleosides are merged 
together into one group that also contains an outlier NCI 620753. The 
remaining Pyrimidine Nucleoside group, VII is merged into one group with 
Group VI, the remaining Azido Pyrimidine group. 

In Table II we note a reduction in the number of singletons to two. Two of 
the singletons in Figure 1, NCI 295302 and NCI 641530 are merged into a 
third group of Benzodiazepines. The asymmetric grouping algorithm also finds 
the two Benzodiazepine groups I and II, as noted in Figure 1. Like the 
symmetric results the Pyrimidine Nucleosides and the Azido Pyrimidines are 
merged into three groups instead of five. Group VI and VII are merged 
together into one group, just like in the symmetric case. This grouping also 
contains the outlier NCI 625648 (15). Group V occurs as in Figure 1 with one 
nearby outlier included NCI 620753 and one group member moved to the final 
group, NCI 610998. The final group is a merging of Groups III and IV 
including the outlier mentioned previously as well as NCI 648540. The 
asymmetric algorithm results contain fewer singletons and no false singletons. 
Both results create groups with similar structural classes, mixing occurs for 
each slightly differently. 

Conclusions 

Asymmetric clustering provides a new approach to clustering methods 
which have become commonplace in the pharmaceutical industry. Two degrees 
of freedom in similarity decisions opens the door to novel strategies for 
grouping and classification of chemical datasets. The application of these 
techniques will judge their utility and scalability in facilitating problem solving 
in areas such as high throughput screening results, compound acquisition 
decisions, and diversity assessments. 

A thorough investigation of the issue of ties in proximity and clustering 
ambiguity in general, with both symmetric and asymmetric measures and 
clustering algorithms is a future topic being investigated. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



T
ab

le
 1

. 
T

ay
io

r-
B

ut
in

a 
Sy

m
m

et
ri

c 
at

 T
an

im
ot

o 
Si

m
ila

ri
ty

 T
hr

es
ho

ld
 o

f 0
.8

5 

Tr
ue

 S
in

gl
et

on
s 

B
en

zo
di

az
ep

in
es

 
Py

rim
id

in
e 

N
uc

le
os

id
es

 a
nd

 
A

zi
do

 P
yr

im
id

in
es

 

ii
; 

i 
IV

+
V

+
ou

tl
ie

r 
V

II
+

V
I;

II
I 

B
64

57
89

(2
) 

B
63

38
10

 (1
) 

N
61

09
98

(l
l)

 
N

64
64

38
(2

0)
 

B
29

53
02

 (3
) 

B
63

85
81

 (
4)

 
N

60
90

67
(1

2)
 

P6
37

64
1 

(2
2)

 
B

64
15

30
(5

) 
B

63
66

61
(9

) 
N

14
00

25
(1

3)
 

P6
37

64
2 

(2
3)

 
N

62
56

48
(1

5)
 

B
63

76
53

(1
0)

 
N

62
07

53
(1

4)
 

P
64

17
00

(2
6)

 
N

64
46

33
 (1

8)
 

N
62

84
95

(1
6)

 
N

64
64

36
 (1

9)
 

P
64

85
40

(2
8)

 
B

62
54

87
(6

) 
N

63
50

34
 (1

7)
 

B
62

54
83

 (7
) 

P6
02

67
0 

(2
1)

 
P6

40
32

3 
(2

4)
 

B
62

54
82

(8
) 

P6
41

03
9 

(2
5)

 
P

64
34

08
(2

7)
 

NO
TE

: F
al

se
 S

in
gl

et
on

s N
64

64
36

 (1
9)

 a
nd

 P
60

26
70

 (2
1)

. 
In

teg
er

s 
in

 p
ar

en
th

es
es

 
all

ow
 co

m
pa

ris
on

 w
ith

 F
igu

re
 2

. R
om

an
 n

um
er

als
 co

rr
esp

on
d 

to
 gr

ou
p 

la
be

ls
 in

 F
igu

re
 1

. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



T
ab

le
 E

L 
A

sy
m

m
et

ri
c 

T
ay

io
r-

B
ut

in
a 

T
ve

rs
ky

 S
im

ila
ri

ty
 T

hr
es

ho
ld

 a
t 0

.9
1 

Tr
ue

 S
in

gl
et

on
s 

B
en

zo
di

az
ep

in
es

 
Py

rim
id

in
e 

N
uc

le
os

id
es

 a
nd

 
A

zi
do

 P
yr

im
id

in
es

 

//;
 /

; 
V

II
I 

V
+

ou
tl

ie
r;

V
I+

V
II

+
ou

ti
ie

r 
II

I+
IV

+
ou

M
er

 
B

64
57

89
(2

) 
B

63
38

10
(1

) 
N

60
90

67
(1

2)
 

N
61

09
98

(l
l)

 
N

64
46

33
(1

8)
 

B
63

85
81

 (
4)

 
N

62
07

53
(1

4)
 

N
14

00
25

(1
3)

 
B

63
66

61
(9

) 
N

62
84

95
(1

6)
 

P
60

26
70

(2
1)

 
B

63
76

53
(1

0)
 

N
63

50
34

 (1
7)

 
P6

40
32

3 
(2

4)
 

P
64

10
39

(2
5)

 
B

62
54

87
(6

) 
N

62
56

48
(1

5)
 

P
64

17
00

(2
6)

 
B

62
54

83
(7

) 
N

64
64

36
(1

9)
 

P
64

34
08

(2
7)

 
B

62
54

82
(8

) 
N

64
64

38
 (

20
) 

P
64

85
40

(2
8)

 
P6

37
64

1 
(2

2)
 

B
29

53
02

(3
) 

P6
37

64
2 

(2
3)

 
B

64
15

30
(5

) 
NO

TE
: N

o 
Fa

lse
 S

in
gl

et
on

s, 
in

teg
er

 n
um

be
rs

 in
 p

ar
en

th
es

es
 a

llo
w

 fo
r 

co
m

pa
ris

on
 w

ith
 

Fi
gu

re
 2

. 
Ro

m
an

 n
um

er
als

 co
rr

esp
on

d 
to

 gr
ou

p 
la

be
ls

 in
 F

igu
re

 1
. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



169 

References 

1. Algorithms for Clustering Data; Jain, A. K.; Dubes, R. C. Prentice 
Hall Advanced Reference Series: Englewood Cliffs, NJ, 1988. 

2. Finding Groups in Data: An Introduction to Cluster Analysis; 
Kaufman, L.; Rousseeuw, P. J. John Wiley & Sons, Inc: New York, 
NY, 1990. 

3. Discriminant Analysis and Statistical Pattern Recognition; 
MacLachlan, G.J. John Wiley & Sons, Inc: New York, NY, 1992. 

4. Pattern Classification; Duda, R. O.; Hart, P. E.; Stork, D. G. 2nd edn. 
John Wiley & Sons, Inc., New York, NY, 2001. 

5. Applied Multivariate Statistical Analysis; Wichern, D. W.; Johnson, 
R.A. Prentice Hall: Englewood Cliffs, NJ, 2002. 

6. Wild, D.J.; Blankley, C.J. Comparison of 2D Fingerprint Types and 
Hierachy Level Selection Methods for Structural Grouping Using 
Ward's Clustering, J. Chem. Inf. Comput. Sci. 2000, 40, 155-162. 

7. Davies, D. L.; Bouldin, D. W. A cluster separation measure. IEEE 
Transactions on Pattern Analysis and Machine Intelligence PAMI, 1, 
1979, 224-227. 

8. Kelley, L. Α.; Gardner, S. P.; Sutcliffe, M. J. An automated approach 
for clustering an ensemble of NMR-derived protein structures into 
conformationally-related subfamilies. Protein Eng. 1996, 9, 1063-
1065. 

9. Faber, V. Clustering and the Continuous k-Means Algorithm. Los 
Alamos Science, 1994, 22. 

10. Taylor, R. Simulation Analysis of Experimental Design Strategies for 
Screening Random Compounds as Potential New Drugs and 
Agrochemicals, J. Chem. Inf. Comput. Sci. 1995, 35, 59-67. 

11. Butina, D. Unsupervised Data Base Clustering Based on Daylight's 
Fingerprint and Tanimoto Similarity: A Fast and Automated Way To 
Cluster Small and Large Data Sets, J. Chem. Inf. Comput. Sci. 1999, 
39, 747-750. 

12. Beni, G.; Liu, X. A Least Biased Fuzzy Clustering Method IEEE 
Transactions on Pattern Analysis and Machine Intelligence 1994, 
16(9), 954-960. 

13. The EM Algorithm and Extensions; McLachlan, G. J.; Krishnan, T. 
John Wiley & Sons: New York, NY, 1997. 

14. Warr, W. A. Combinatorial Chemistry and Molecular Diversity: An 
Overview, J.Chem. Inf. Comput. Sci. 1997, 27, 134-140. 

15. Brown, R.D.; Martin, Y.C. Use of Structure-Activity Data To 
Compare Structure-Based Clustering Methods and Descriptors for Use 
in Compound Selection, J.Chem.Inf. Comput. Sci. 1996, 36, 572-584. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



170 

16. Downs, G. M.; Barnard, J. M. Clustering Methods and Their Uses in 
Computational Chemistry, Reviews in Computational Chemistry; Vol. 
18, Lipkowitz, Κ. B. and Boyd, D. B., Eds; Wiley-VCH: New York, 
2002, 1-40. 

17. Raymond, J. W.; Gardiner, E. J.; Willett, P. RASCAL: Calculation of 
Graph Similarity using Maximum Common Edge Subgraphs. J. 
Chem. Inf. Comput. Sci. 2002 45 (6), 631-644. 

18. eduSoft, L C ., Richmond, Va. Home page: http://www.edusoft-lc.com/ 
19. Putta, S.; Lemmen, C.; Beroza, P.; Greene, J. A Novel Shape— 

Feature Based Approach to Virtual Library Screening, J. Chem. Inf. 
Comput. Sci 2002, 42, 1230-1240. 

20. MDL Information Systems, Inc., San Leandro, CA. Home page: 
http://www.mdli.com/. 

21. Daylight Chemical Information Systems, Inc., Mission Viejo, CA. 
Home page: http://www.daylight.com/. 

22. Rhodes, N.; Willett, P. Bit-String Methods for Selective Compound 
Acquisition. J. Chem. Inf. Comput. Sci 2000, 40, 210-214. 

23. Willet, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity 
Searching. J.Chem. Inf. Comput. Sci. 1998, 38 (6), 983. 

24. Tversky, A. Psychological Reviews, 1977,84(4),327-352. 
25. Hubalek, Z. Coefficients of Association and Similarity, Based on 

Binary (Presence - Absence) Data: An Evaluation. Biol. Rev. 1982, 
57, 669-689. 

26. Bradshaw, J. Introduction to the Tversky similarity measure. MUG 
'97 - 11th Annual Daylight User Group Meeting, February, 1997. 

27. Tarjan, R. An Improved Algorithm for Hierarchical Clustering Using 
Strong Components. Inf. Process. Lett. (IPL) 1983, 17, 37-41. 

28. MacCuish, N. E.; MacCuish, J. D. Shape Clustering with Tversky 
Similarity. Manuscript in Preparation. 

29. Nicolaou, C. Α.; MacCuish, J. D.; Tamura, S. Y. A new multidomain 
clustering algorithm for lead discovery that exploits ties in 
proximities. In Rational Approaches to Drug Design; Proceedings of 
the 13th European Symposium on Quantitative Structure—Activity 
Relationships. Dusseldorf, Aug 27—Sept 1 2000; Prous Scientific. 

30. Flower, D. R. On the Properties of Bit String-Based Measures of 
Chemical Similarity. J. Chem. Inf. Comput. Sci. 1998 38, 379-386. 

31. Dixon, S. L.; Koehler, R. T. The Hidden Component of Size in Two 
Dimensional Fragment Descriptors: Side Effects on Sampling in 
Bioactive Libraries. J. Med. Chem. 1999, 42, 2887-2900. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 

http://www.edusoft-lc.com/
http://www.mdli.com/
http://www.daylight.com/


171 

32. Godden, J. W.; Xue L.; Bajorath, J. Combinatorial Preferences Affect 
Molecular Similarity/Diversity Calculations Using Binary Fingerprints 
and Tanimoto Coefficients. J. Chem. Inf. Comput. Sci. 2000, 40, 163-
166. 

33. MacCuish, J.; Nicolaou, C.; MacCuish, N. Ties in Proximity and 
Clustering Compounds. J. Chem. Inf. Comput. Sci. 2001 41 (1), 143-
146. 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
1

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



Chapter 12 

From Decision Tree to Heterogeneous Decision 
Forest: A Novel Chemometrics Approach 

for Structure-Activity Relationship Modeling 

Weida Tong1,*, Huixiao Hong2, Hong Fang2, Qian Xie2, 
Roger Perkins2, and John D. Walker3 

1Center for Toxicoinformatics, Division of Biometry and Risk Assessment, 
National Center for Toxicological Research, 3900 NCTR Road, HFT 20, 

Jefferson AR 72079 
2Northrop Grumman Information Technology, Jefferson, AR 72079 

3TSCA Interagency Testing Committee (ITC), U.S. Environmental 
Protection Agency (7401), Washington, DC 20460 

*Corresponding author: telephone: (870) 543-7142; fax: (870) 543-7662; 
email: wtong@nctr.fda.gov 

The techniques of combining the predictions of multiple 
classification models to produce a single model have been 
investigated for many years. In earlier applications, the 
multiple models to be combined have been developed by 
altering the training set. The use of these so-called resampling 
techniques, however, enhance the risk of reducing predictivity 
of the models to be combined and/or over fitting the noise in 
the data, which might result in poorer prediction of the 
composite model than the individual models. In this paper, we 
suggest a novel approach, named Heterogenious Decision 
Forest (HDF), that combines multiple Decision Tree models. 
Each Decision Tree model is developed using a unique set of 
descriptors. When models of similar predictive quality are 
combined using the HDF method, quality compared to the 
individual models is consistently and significantly improved in 
both training and testing steps. An example will be presented 
for prediction of binding affinity of 232 chemicals to the 
estrogen receptor. 

U.S. government work. Published 2005 American Chemical Society. 173 
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Figure 1. A schematic presentation of combining the results offour models. 

Combining (or ensemble) forecast is a statistical technique that combines 
the results of multiple individual models to reach a single prediction1. The 
overall scheme of the technique is shown in Figure 1, where the individual 
models are normally developed using an Artificial Neural Network (ANN)2"4 or 
Decision Tree5*6. A thorough review of this subject can be found in a number of 

7-9 

papers . 
In most cases, individual models are developed using a portion of chemicals 

randomly selected from the original dataset10. For example, a dataset can be 
randomly divided into two sets, 2/3 for training and 1/3 for testing. A model 
developed with the training set will be accepted if it gives satisfactory 
predictions for the testing set. A set of predictive models is generated by 
repeating this procedure, and the predictions of these models are then combined 
when predicting a new chemical. The training set can also be generated using 
more robust statistical "resampling" approaches, such as Bagging11 or 
Boosting12. 

Bagging is a "bootstrap" ensemble method by which each model is 
developed on a training set that is generated by randomly selecting chemicals 
from the original dataset11. In the selection process, some chemicals may be 
repeated more than once while others may be left out so that the training set is 
the same size as the original dataset. In Boosting, the training set for each model 
also is the same size as the original dataset. However, each training set is 
determined based on the performance of the earlier model(s); chemicals that are 
incorrectly predicted by the previous model are chosen more often than 
chemicals that were correctly predicted in the next training set12. Boosting, 
Bagging and other resampling approaches have all been reported to improve 
predictive accuracy. 

The resampling approaches use only a portion of the dataset for constructing 
the individual models. Since each chemical in a dataset encodes some Stucture 
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Activity Relationship (SAR) information, reducing the number of chemicals in a 
training set for model construction will weaken most individual models' 
predictive accuracies. It follows that reducing the number of chemicals also 
reduces the improvement in a combining system gained by the resampling 
approach. Moreover, Freund and Schapire reported that some resampling 
techniques could be at risk of overfitting the noise in the data, which leads to 
much worse prediction from multiple models12. 

The idea of combining multiple models implicitly assumes that one could 
not identify all aspects of the underlying variable relationship, and thus different 
models are able to capture it for prediction. Combining several identical models 
produces no gain. The benefit of combining multiple models can be realized only 
if individual models give different predictions. An ideal combined system should 
consist of several accurate models that disagree as much as possible. 

In this paper, a novel combining forecast approach is explored that classifies 
a new chemical by combining the predictions from multiple decision tree 
models. This method is named Heterogenious Decision Forest (HDF). A HDF 
model consists of a set of individually trained decision trees that are developed 
using unique sets of descriptors. Our results suggest that the HDF model is 
consistently superior to any individual trees that are combined to produce the 
forest in both training and validation steps. 

Materials and Methods 

Heterogenious Decision Forest (HDF) Algorithm 

The important aspects of the HDF approach were: 1) each individual model 
in Figure 1 was developed using a distinct set of descriptors that was explicitly 
excluded from all other models, thus ensuring each individual model's unique 
contribution to making predictions; and 2) the quality of all models in HDF is 
comparable to ensure that each model significantly contributes to the prediction. 
The development of the HDF algorithm consists of the following steps: 
1. The algorithm can be initiated with either a pre-defined number of models 

(N) to be combined or a misclassification threshold to set a quality criterion 
for individual models. The former case is illustrated in this paper. 

2. A tree is constructed without pruning. The tree identifies the minimum 
number of misclassified chemicals (MIS) for a given dataset. MIS then 
serves as a quality criterion to guide individual tree construction and 
pruning in the following iterative steps 3-6. 

3. A tree is constructed and pruned. The extent of pruning is determined by the 
MIS. The pruned tree assigns a probability (0-1) to each chemical in the 
dataset. 
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4. The descriptors used in the previous model are removed from the original 
descriptor pool, and the remaining descriptors are used for the next tree 
development. 

5. Steps 3 and 4 are repeated until no additional model with misclassifications 
< MIS can be developed from the unused portion of the original pool of 
descriptors. 

6. If the total number of models is less than N, the MIS is increased by 1, and 
the steps 3 to 5 are repeated. Otherwise, multiple decisions from individual 
trees are combined using a linear combination method, where the mean 
value of the probabilities for all trees is used to determine the classification 
of a chemical. A chemical with the mean probability larger than 0.5 is 
designated as active while a chemical with a mean value less than 0.5 is 
designated as inactive. 

MIS = MIS+\ 

N O 

Input: 
1. A set of chemicals with a) binomial 

activity data, and b) a descriptor pool 
2. The number of models to be combined 

(N) (N) 

\ f 
Initiate an MIS based on the 
misclassifications in the first tree without 
pruning 

I 
Construct a tree model and 
Prune the tree using MIS 

Remove the descriptors used in the tree 
from the descriptor pool 

Combining the results using the linear 
combination method 

Figure 2. Flowchart of the HDF algorithm. 
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Tree development 

The development of a tree model consists of two steps, tree construction and 
tree pruning. In the tree construction process, a parent population is split into 
two children nodes that become parent populations for farther splits. The splits 
are selected to maximally distinguish the response descriptors in the left and 
right nodes. Splitting continues until chemicals in each node are either in one 
activity category or can not be split further to improve the model. To avoid 
overfitting the training data, the tree needs to be cut down to a desired size using 
tree cost-complexity pruning. In the present application, the method for the tree 
development is described by Clark and Pregibon13 as implemented in S-Plus, 
which is a variant of the Classification and Regression Tree (CART) algorithm. 
It employs deviance as the splitting criterion. The HDF algorithm is written in S 
language and run in S-Plus software. 

Model assessment 

Misclassification and concordance are used to measure model quality. 
Misclassification is the number of chemicals misclassified in a tree model, while 
concordance is the number of correct predictions divided by the total number of 
predictions. 

NCTR dataset 

A large and diverse estrogen dataset, called the NCTR dataset14'15, was used 
in this study. The NCTR dataset contains 232 structurally diverse chemicals16, of 
which 131 chemicals were found to actively bind to an estrogen receptor17 while 
101 are inactive18 in a competitive estrogen receptor binding assay. 

Descriptors 

More than 250 descriptors for each molecule were generated using Cerius 2 
software (Accelrys Inc., San Diego, CA 92121). These descriptors were 
categorized as 1) conformational, 2) electronic, 3) information content, 4) 
quantum mechanical, 5) shape related, 6) spatial, 7) thermodynamic, and 8) 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ch

01
2

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



178 

topological. The descriptors were preprocessed by removing those with no 
variance across the chemicals. A total of 197 descriptors were used for the final 
study. 

Results 

Figure 3 gives a plot of misclassification versus the number of combined 
decision trees. The number of misclassifications varies inversely with the 
number of trees. The reduction in misclassification is greatest in the first four 
trees, where more than 14 the misclassifications were eliminated. A forest 
comprising seven distinct trees eliminated about 2/3 of the misclassifications of 
the initial decision tree. 

Figure 3. Relationship of misclassifications with the number of trees combined 
in HDF. 

Table 1 provides more detailed results on the models of the HDF and the 
decision trees combined. Based on misclassifications, all HDF models (different 
combinations) perform better than any individual decision tree. Of 202 original 
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descriptors, 88 were ultimately used for the forest combining seven decision 
trees. The progressive decrease in misclassifications as decision trees are 
successively added to the forest demonstrates how each unique descriptor set 
contributes uniquely to the aggregate predictive ability of the forest. Generally, 
decision trees with fewer "branches" are expected to perform better because the 
descriptors are better able to encode the functional dependence of activity on 
structure. Table 1 also shows the expected trends of both more descriptors and 
more branches in the decision trees as the descriptors better able to encode the 
activity versus structure dependency are successively removed from the 
descriptor pool. 

Table 1. The results of 7 individual trees and their combination 
performance 

Tree ID Number of 
Descriptors used 

Number 
of 

branches 

Misclassifications in Tree ID Number of 
Descriptors used 

Number 
of 

branches Each Tree Combination 
1 10 13 17 17 
2 10 13 19 14 
3 12 15 17 13 
4 12 14 17 8 
5 15 18 19 7 
6 16 19 20 6 
7 13 17 18 5 

Table 2 gives a comparison of decision tree and HDF as measured by 
chemicals predicted as active that are actually inactive (false positives) and 
chemicals predicted as inactive that are actually active (false negatives). The 
decision tree being compared corresponds to that in the first row of Table 1 that 
has 17 misclassifications. The forest being compared in Table 2 corresponds to 
the bottom row in Table 1 where seven decision trees are combined and for 
which there are five misclassifications. In the Table 2 comparison, the decision 
tree utilizes 10 descriptors and produces nine false negatives and eight false 
positives. In contrast, the forest model utilizes 88 unique descriptors and 
produces four false negatives and one false positive, a marked improvement in 
the prediction performance compared to the decision tree. 
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Table 2. Comparison of model performance between Decision Tree 
and HDF 

Experiment 
Results 

Decision Tree 
Prediction 

HDF 
Prediction Experiment 

Results 
A* I* A I 

A= 131 122 9 127 4 
1= 101 8 93 1 100 

* A = Active; I = Inactive 

Among the many schemes to combine multiple decision trees, we evaluated 
linear combination and voting. The voting method uses the majority of votes to 
classify a chemical. The linear combination method uses the mean of 
probabilities of the individual decision trees. We found the two methods to 
produce the same results (results not shown), and chose linear combination 
because a tie vote cause problem in the voting method. 

Figure 4. Distribution of active/inactive chemicals across the probability bins in 
HDF. The probability of each chemical was the mean value calculated over all 
individual trees in HDF. A chemical with probability larger than 0.5 was 
designated as active while less than 0.5 was inactive. 

HDF assigns a mean probability of the combined trees using the linear 
combination approach. Figure 4 shows the concordance results of the HDF 
prediction of the NCTR dataset in ten even intervals between 0 and 1. Analysis 
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shows that the interval 0.7 - 1.0 has an average concordance of 100% of true 
positives, and the interval 0.0 - 0.3 has an average concordance of 98.9% true 
negatives. The vast majority of misclassifications occur in the 0.3 - 0.7 
probability range where the average concordance is 78%. 

A more robust validation of the predictive performance was conducted by 
dividing the NCTR data set into a training component comprising two-thirds, or 
155, of the chemicals and a testing component comprising the remaining 77 
chemicals. Both HDF and Decision tree models were constructed for a random 
selection of the training set, and then used to predict the testing set. This was 
repeated 2000 times to give the concordance results shown in Figure 5. Figure 5 

Concordance 

Figure 5. Comparison of the model results between Decision Tree and HDF in a 
validation process. In this method, the dataset was divided into two groups, 2/3 
for training and 1/3 for testing. The process was repeated 2000 times. The solid 
line is associated with the results from HDF while the dash line is for Decision 
Tree. The quality of a model in both training (circle) and predication (square) 

was assessed using concordance that was calculated by dividing the 
misclassifications by the number of training chemicals in the training step and 
by the number of testing chemicals in prediction, respectively. The position of a 

dot (circle or square) on the graph identifies the number of models with a 
certain value of concordance. 
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gives on the Y-axis the number of times out of 2000 that a model attained the 
concordance value given on the X-axis. The consistently better predictive 
average concordance of the HDF is readily discernable, as is the narrower 
distribution for prediction of the training set versus the test set. Both leave-one-
out and leave-10-out validation tests were also performed and showed a similar 
trend (results not shown). 

Discussion 

We presented a novel combining forecast approach, HDF, that combines 
predictions of individually trained Decision Trees, each developed using a set of 
unique descriptors. The method was illustrated by classifying 232 chemicals into 
estrogen and non-estrogen receptor-binding categories. We demonstrated that 
DHF yielded better classification and prediction than Decision Tree in both 
training and validation steps. 

A SAR equation can be generalized as Bio =/(Di, D2, Dn), where Bio is 
biological activity data (binomial data in classification) and Di to D n are 
descriptors. This equation implies that the variance in Bio is explained in a 
chemistry space defined by the descriptors (Dj ... Dn). Accordingly, HDF can be 
understood as a pooling result of SAR models that predict activity within their 
unique chemistry spaces. Since each SAR model is developed using a unique set 
of descriptors, the difference in their prediction is maximized. Thus, it is safe to 
assume that combining multiple valid SAR models that use unique sets of 
descriptors into a single decision function should provide better estimation of 
activity than that separately predicted by the individual models. 

A number of commercial software packages, including CODESSA 
(Semichem, Shawnee, KS), Cerius2 (Accelrys Inc., San Diego, CA) and 
Molconn-Z (eduSoft, LC, Richmond, VA), enables a large volume of descriptors 
to be generated for SAR studies. HDF takes advantage of this large volume of 
descriptors by aggregating the information of structural dependence on activity 
represented from each unique set of descriptors. Unlike the re-sampling 
techniques used in most combining forecast approaches, all training chemicals 
are included in each decision tree to be combined in the HDF, thus maximizing 
the SAR information. 

It is important to note that there is always a certain degree of noise 
associated with biological data, and particularly the data generated from a High 
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Throughput Screen process. Thus, optimizing SAR models inherently risks over 
fitting the noise, a result most often observed using ANNs. Since the 
combination scheme of HDF is not a fitting process, some noise introduced by 
individual SAR models will be cancelled when combining predictions. 
Moreover, using Decision Tree to construct HDF offers additional benefits 
because the quality of a tree can be adjusted in the pruning process using the 
MIS parameter as a figure of merit for model quality. The MIS parameter is an 
indicator of noise, enabling the modeler a way to reduce over fitting of the noise. 

HDF can be used for priority setting in both drug discovery and regulatory 
applications. The objective of priority setting is to rank order from most 
important to least important a large number of chemicals for experimental 
evaluation. The purpose of some priority setting in drug discovery is to identify a 
few lead chemicals, but not necessarily all potential ones. In other words, 
relatively high false negatives are tolerable, but false positives need to be low. In 
the example we presented, chemicals predicted to be active with probability > 
0.7 were shown to have 100% concordance with experimental data, thus 
demonstrating its use for lead selection. 

In contrast, a good priority setting method for regulatory application should 
generate a small fraction of false negatives. False negatives constitute a crucial 
error, because they will receive a relatively lower priority for experimental 
evaluation. In the example we presented, chemicals predicted to be inactive with 
probability < 0.3 were shown to have 98.9% concordance with experimental 
data, thus demonstrating its use for regulatory application. 
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comparison of coefficients, 85/ 
definition, 86 
See also Chemical similarity and 

dissimilarity 

F 

Feature selection, classical support 
vector regression (SVR) variation, 
116-118 

Fingerprints, topological descriptor, 
146 

Fitness function, pattern recognition 
analysis, 133-134 

Flawed calibration, strategy for, 18 

G 

Gasolines 
Mallat wavelet prism transform, 

25/ 
variation in spectra, 3-4, 5/ 
wavelet transformation of spectral 

data, 24/ 
Gene expression 

microarray technologies, 31-32 
See also Microarrays 

Genetic algorithms (GA) 
block diagram for pattern 

recognition, 136/ 
chemical mathematics, 68 
pattern recognition, 132-135 
See also Odor structure 

relationships (OSR) 
Global modeling, robust calibration, 

19-20 
Graph theory 

approximations, 62 
chemical mathematics, 57-58 

H 

Hamiltonian path problem, chemical 
mathematics, 71-72 

Hammett electronic parameters, 
CQSAR program, 102-103 

Heterogenious decision forest (HDF) 
algorithm, 175-176 
flowchart of algorithm, 176/ 
pooling of structure-activity 

relationship (SAR) models, 
182 

priority setting method, 183 
software packages, 182 
See also Structure activity 

relationship (SAR) 
High-throughput screening (HTS), 

chemoinformatics, 47-49 
HIV-1 protease inhibitors 

comparative molecular field 
analysis (CoMFA), 105 

FDA approved, 106 
mortality and morbidity of AIDS, 

103 
See also Cheminformatics 

Hosoya Index, chemical mathematics, 
65-66 

Hydrophobic parameter, CQSAR 
program, 102 
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I 

ID Alert dataset 
similarity property principle, 88, 

92/ 93/ 
See also Chemical similarity and 

dissimilarity 
ID number index, chemical 

mathematics, 66-67 
Image analysis, chemometrics 

application, 11 
Implementation strategy, classical 

support vector regression (SVR) 
variation, 116 

Indirect observation, chemometrics, 
2-3 

Ion exchange chromatography (IEC) 
bioseparation, 112 
protein retention dataset, 114 

Isomer enumeration, chemical 
mathematics, 62-63 

Iterative screening, chemoinformatics, 
47-49 

Jaccard coefficient, Tanimoto 
coefficient, 78 

Jarvis-Patrick clustering method, 
nearest neighbor identification, 79 

K 

Kappa Indices, chemical mathematics, 
67 

Keysets 
constructing better, 150-155 
definition and selection of keys, 

150 
key definitions in MDL, 149/ 
MDL databases, 148 
performance, 152 
predicting activity, 150-151 

surprisal significance, 151 
See also MDL substructure search 

keys 

L 

Latent variables, soft modeling, 3-
4 

Leukemia 
molecular classification of samples, 

39 
See also Microarrays 

Linear free energy relationship 
(LFER), approach using 
descriptors, 98 

Linear least squares, technique 
averaging data, 10 

M 

Macroscopic chemistry, microscopic 
and, 56-57 

Mathematical chemistry, 57 
Mathematics. See Chemical 

mathematics 
MDL Drug Data Report (MDDR) 

database 
computing similarity of 

compounds, 150 
distinguishing druglike substances, 

153 
MDL substructure search keys 

ADMET (absorption, distribution, 
metabolism, excretion, and 
toxicity) property prediction, 
152-153 

defining MDL keys, 147-149 
definition and selection of keys, 

150 
descriptor calculation program 

DRAGON, 146 
dimensionality of chemical 

structure space, 146 
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effect of weighting schemes and 
keysets on prediction of drug-
likeness, 154/ 

effect of weighting schemes on 
hitlist size for keysets, 154/ 

effects of various key weighting 
schemes, 152-155 

ENKFIL file or table to define 
substructure key, 148 

fingerprints, 146 
genetic algorithms (GA) as 

optimization, 151-152 
key definitions for first 24 keys in 

MDL 166-keyset, 149/ 
new use for substructure keys, 146-

147 
number of keys for predicting 

activity, 150-151 
performance rates, 152 
predicting biological activity from 

structure, 146 
substructure "keys", 146 
success rates, 151-152 
surprisal of descriptor, 151 
surprisal significance, 151 
Tanimoto coefficient, 147 

Measurements, chemometrics, 2-3 
Methylcyclopropane 

graph theory, 57-58 
Morgan numbering, 59-60 

Microarrays 
ALL (lymphoid origin) or AML 

(myeloid origin) bone marrow 
or blood samples, 33 

chemometrics application, 11-12 
comparing wl and regression 

coefficients, 37-38 
disease classification, 32 
experimental, 33 
finding cutoff value, 34-35,38-39 
gene expression, 31-32 
generation of ranking list, 33-34 
methods, 33-35 
molecular classification of 

leukemia samples, 39 

partial least squares (PLS) risks, 
32-33 

PLS-DA model, 33 
PLS-DA model for ALL/AML, 35, 

36/ 
score plot for PLS-DA model 

discriminating ALL and AML 
samples, 36/ 

tool in functional genomics, 32 
validation of prediction (Q2) and 

correlation (R2Y), 35, 37 
Microscopic chemistry, macroscopic 

and, 56-57 
Misclassifications 

model assessment, 177 
plot of, versus number of combined 

decision trees, 178/ 
See also Structure-activity 

relationship (SAR) 
Model improvement 

localized preprocessing with 
wavelets, 22,24-27 

projection methods for, 20-22 
Modeling 

boundaries between molecular, 45-
46 

soft, in latent variables, 3-4 
Modeling method, partial least squares 

(PLS), 10 
MOE program, descriptor generation, 

115-116, 123 
Molecular descriptors 

clustering compound data, 158-
159 

CQSAR program, 101-103 
Molecular dynamic (MD) simulations, 

chemometrics application, 12 
Morgan algorithm, structure 

searching, 59-60 
Multivariate analysis methods, soft 

modeling in latent variables, 4, 6/ 
7/ 

Multivariate calibrations 
calibration model transfer, 16-17 
dual-domain calibration, 27-28 
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dual-domain partial least squares 
(DDPLS) regression, 29 

full calibration, 18 
global modeling, 19-20 
improving calibration model, 16 
limitation, 16 
local analysis for robust calibration 

model creation, 17-20 
local preprocessing with wavelets 

for model improvement, 22,24-
27 

orthogonal signal correction (OSC), 
20-21 

performance of POSC and OSC on 
representative near infrared 
(NIR) data, 22,23/ 

piecewise OSC (POSC) 
preprocessing, 21 

projection methods for improving 
model performance, 20-22 

robust cal ibration, 18-19 
robust modeling through multi-

scale calibration, 27-29 
standardization of instrumental 

aspects, 16-17 
starch prediction of Cargill corn 

samples, 29/ 
strategy for flawed calibration, 18 
tool, 16 

Multivariate projection method, 
classification of leukemia samples, 
39 

Musk compounds 
discriminant analysis, 128-129 
musk data set, 130-131 
structural class, 131/ 
See also Odor structure 

relationships (OSR) 

N 

Near infrared (NIR) spectra 
acetone calibration and prediction 

errors, 26/ 

multivariate calibration, 16 
orthogonal signal correction (OSC) 

and piecewise OSC (POSC), 22, 
23/ 

Noise, fitting with biological data, 
182-183 

Noise variation, principal component 
analysis (PCA), 9 

Non-deterministic polynomial (NP) 
time problem, chemical 
mathematics, 71-72 

Nonmusk compounds 
discriminant analysis, 128-

129 
musk data set, 130-131 
structural class, 131/ 
See also Odor structure 

relationships (OSR) 

Octane number, variation in spectra, 
3-4,5/ 

Odor structure relationships (OSR) 
applying principal component 

analysis (PCA) to training data 
set, 136, 138/ 

block diagram of genetic algorithm 
(GA) for pattern recognition, 
136/ 

boosting, 135 
class and sample weight equations, 

133 
computer analysis using descriptors 

and pattern recognition, 128 
discriminant analysis to 

differentiate musk and nonmusk, 
128-129 

electron density derived 
descriptors, 130-131 

facilitating design of new odorants, 
129 

fitness function of pattern 
recognition, 133-134 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ix

00
2

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



200 

genetic algorithm (GA) for pattern 
recognition, 132-133 

limited success of past efforts. 129-
130 

molecular descriptors by pattern 
recognition GA, 137, 140/ 

musk data set, 130-131 
pattern recognition analysis, 132— 

135 
pattern recognition GA, 130 
principal component plot of 331 

compounds and 16 TAE derived 
descriptors, 137, 139/ 

principal mapping experiment for 
331 compounds and 871 
descriptors, 136,138/ 

property encoded surface translator 
(PEST) algorithm, 132 

representative musk and nonmusk 
compound classes, 131/ 

sample hit count, 133-134 
transferable atom equivalent (TAE) 

descriptor methodology, 129 
Olfaction, phenomenon, 128 
Orthogonal signal correction (OSC) 

piecewise OSC (POSC) 
preprocessing, 21 

POSC and OSC performance, 22, 
23/ 

principle, 20 

Paradigm of learning, chemometrics, 3 
Partial least squares (PLS) 

dual-domain regression, 28-29 
modeling method, 10 
quantitative structure-retention 

relationship (QSRR), 112 
risks for microarray data, 32-33 

Pattern recognition analysis 
block diagram of genetic algorithm 

(GA)for, 136/ 

class and sample weight equations, 
133 

fitness function, 133-134 
genetic algorithm, 129-130 
genetic algorithm (GA), 132-133 
property encoded surface translator 

(PEST) algorithm, 132 
sample hit count (SHC), 133-134 
See also Odor structure 

relationships (OSR) 
Pharmaceutical industry 

chemoinformatics, 43 
See also Chemoinformatics 

Physicochemical parameters, CQSAR 
program, 101-103 

Piecewise orthogonal signal correction 
(POSC) 
performance for corn samples, 22, 

23/ 
preprocessing, 21 

Piecewise preprocessing, orthogonal 
signal correction (OSC), 21 

Polymer design, genetic algorithms, 
68 

Prediction errors, acetone calibration, 
26/ 

Preprocessing for robust models, 
information loss, 27 

Principal component analysis (PCA) 
axes defining measurement space, 

8/ 
collinearity, 4, 9 
redundancy, 4,9 
variance, 8-10 
See also Odor structure 

relationships (OSR) 
Principal component regression 

(PCR), quantitative structure-
retention relationship (QSRR), 112 

Priority setting method, heterogenious 
decision forest (HDF), 183 

Property encoded surface translator 
(PEST) algorithm 
pattern recognition analysis, 132 
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surface property hybrid descriptors, 
130, 131, 132 

Protein retention dataset 
ion exchange chromatography 

(IEC) system, 114 
predictions, 119-120, 121/ 

Pyrimidine nucleosides 
asymmetric Tayior-Butina Tversky 

similarity cutoff of 0.91, 166, 
168/ 

Tayior-Butina symmetric at 
Tanimoto similarity cutoff of 
0.85, 166, 167/ 

Q 

Quantitative structure-activity 
relationship (QSAR) 
dimensionality of chemical 

property space, 146 
paradigm, 98 
statistical mechanics, 69 
See also Cheminformatics 

Quantitative structure-property 
relationship (QSPR), statistical 
mechanics, 69 

Quantitative structure-retention 
relationship (QSRR) 
bagging (Bootstrap Aggregation), 

116 
classical support vector regression 

(SVR) variation (v-SVR), 116 
dataset generation, 114-116 
definition of descriptors from SVR 

feature selection, 120/ 
descriptor generation, 114-116 
electron-density derived 

descriptors, 114-115, 123 
feature selection, 116-118 
general framework of feature 

selection scheme, 118/ 
margin, 117 
nonlinear regression bagging 

models, 118-119 

prediction scatter plot using non­
linear SVR model, 121/ 

protein retention dataset, 114 
star plots generation process, 122/ 
statistical algorithms, 112 
support vector regression (SVR), 

112-114 
SVR feature selection and bagging 

prediction results, 119-120, 
123 

transferable atom equivalents 
(TAEs), 114-115, 123 

R 

Reconstruction program, descriptor 
generation, 114-115 

Redundancy 
principal component analysis 

(PCA), 4, 9 
soft modeling, 4 

Regulatory applications, 
heterogenious decision forest 
(HDF), 183 

Resampling approaches 
bagging, 174 
boosting, 174 
structure-activity relationship 

(SAR), 174-175 
Reverse processing, chemical 

mathematics, 67 
Robust calibration 

global modeling, 19-20 
isolating key wavelengths in near 

infrared (NIR), 19 
local analysis, 17-20 
See also Multivariate calibrations 

Robust modeling, multi-scale 
calibration, 27-29 

Root mean squared error of cross-
validation (RMSECV), calculation 
for corn samples, 22,23/ 

Root mean squared error of prediction 
(RMSEP), calculation, 22 

 A
ug

us
t 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 A

ug
us

t 9
, 2

00
5 

| d
oi

: 1
0.

10
21

/b
k-

20
05

-0
89

4.
ix

00
2

In Chemometrics and Chemoinformatics; Lavine, B.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2005. 



202 

S 

Sensor performance, chemometrics 
application, 11 

Signal variation, principal component 
analysis (PCA), 9 

Similarity 
applicability of similar property 

principle, 87-89 
measurement of structural, 78 
See also Chemical similarity and 

dissimilarity 
Simulations, chemometrics 

application, 12 
Single-domain regression models, 

combination of set, 27-28 
Soergel coefficient, complement of 

Tanimoto coefficient, 78 
Soft modeling, latent variables, 3-4 
Software packages, heterogenious 

decision forest (HDF), 182 
Standardization, instrumental aspects 

of calibration, 16-17 
Starch prediction, corn samples, 29/ 
Star plot 

generation process, 122/ 
support vector regression (SVR) 

model, 120 
Statistics, chemical mathematics, 69-

70 
Steric parameters, CQSAR program, 

103 
Structural similarity, measurement, 78 
Structure-activity relationship (SAR) 

cause and effect relation, 98 
combining forecast, 174, 182 
combining multiple models, 175 
commercial software packages, 182 
comparison of model performance 

between decision tree and 
heterogenious decision forest 
(HDF), 179, 180/ 

comparison of model results 
between decision tree and HDF 
in validation process, 181/ 

degree of noise associated with 
biological data, 182-183 

descriptors, 177-178 
distribution of active/inactive 

chemicals across probability 
bins in HDF, 180/ 

equation, 182 
flowchart of HDF algorithm, 176/ 
HDF algorithm, 175-176,182 
linear combination method, 180 
materials and methods, 175-178 
model assessment, 177 
National Center for Toxicological 

Research (NCTR) dataset, 177 
performance of individual decision 

tree vs. HDF, 178-179 
plot of misclassification vs. number 

of combined decision trees, 178/ 
priority setting method, 183 
probability of combined trees using 

linear combination approach, 
180-181 

resampling approaches, 174-175 
schematic of combining model 

results, 174/ 
tree development, 177 
validation, 181-182 
voting method, 180 
See also Cheminformatics 

Structure/property-activity, 
methodologies, 42 

Structure searching 
chemical mathematics, 58-61 
Dendral Project, 58-59 
Morgan algorithm, 59-60 
substructure, 61 
superstructure, 61 

Substructure, structure searching, 61 
Substructure keys 

Tanimoto coefficient, 146-147 
topological descriptor, 146 
typical entry in ENKFIL table, 148/ 

Substructure search. See MDL 
substructure search keys 

Superstructure, structure searching, 61 
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Support vector machine (SVM) 
regression 
modeling approach, 112, 124 
See also Quantitative structure-

retention relationship (QSRR) 
Support vector regression (SVR) 

characteristics, 112-114 
classical SVR variation, 116 
definition of descriptors from 

feature selection, 120/ 
e-insensitive losses as training 

error, 113 
feature selection and bagging 

prediction, 119-120, 123 
graphical depiction of e-insensitive 

loss function, 113/ 
prediction scatter plot using non­

linear SVR model, 121/ 
regularization factor, 113 
regularization parameter, 113 
star plots generation process, 122/ 
See also Quantitative structure-

retention relationship (QSRR) 
Surprisal, descriptor, 151 
Surprisal significance, form of T 

statistic, 151 

Tanimoto coefficient 
analysis of coefficients, 83, 86-87 
analysis of similarities, 82-83, 84/ 
binary form, 78-79 
comparison of coefficients, 85/ 
definition, 78, 147 
distribution, 79 
Jarvis-Patrick clustering method, 

79 
low-valued, 79-80 
similarity search against target 

using bit-string based, 81/ 
substructure keys, 146-147 
See also Chemical similarity and 

dissimilarity 

Tanimoto dissimiliarity cutoff, dataset 
clustering, 162, 163/ 

Tanimoto measure, equation, 160 
Target validation chemistry, 

chemoinformatics, 49 
Tarjan, clustering algorithm, 162, 165/ 
Tayior-Butina clustering algorithm 

asymmetric, Tversky similarity 
cutoff, 166, 168/ 

asymmetric variant, 161-162 
symmetric, 166, 167/ 

Term 
chemoinformatics, 41 
chemometrics, 2 
robust calibration, 18-19 

Topological index (TI), statistical 
mechanics, 69 

Topological indices 
chemical mathematics, 63-67 
Connectivity index, 66 
Hosoya Index, 65-66 
ID Number index, 66-67 
Wiener Index, 64-65 

Toxicity. See MDL substructure 
search keys 

Transferable atom equivalents (TAEs) 
electron-density derived 

descriptors, 114-115,123, 129 
See also Odor structure 

relationships (OSR) 
Traveling salesman problem, chemical 

mathematics, 71-72 
Tversky measure 

asymmetry, 160-161 
equation, 160 

UNITY, bit-string, 82 

Vapor pressure, calculation, 69 
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Variance, principal component 
analysis (PCA), 8-10 

Variation, spectra of gasolines and 
octane number, 3-4, 5/ 

Virtual screening (VS) 
chemoinformatics, 47-49 
drug design, 112 
See also Quantitative structure-

retention relationship 
(QSRR) 

W 

Wards clustering, merging criterion, 
162,164/ 

Wavelet preprocessing 

acetone from near infrared (NIR) 
spectra, 26-27 

discrete wavelet transform (DWT), 
24 

gasoline spectral data, 24/ 
localized, for model improvement, 

22, 24-27 
Mallat wavelet prism transform, 

25/ 
Weight 

effects of weighting schemes, 152— 
155 

substructure keys, 147 
Wiener Index, chemical mathematics, 

64-65 
Wold, Herman, partial least squares 

(PLS), 10 
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